Hill Mary C, Osterby Ole
US Geological Survey, Boulder, CO 80302, USA.
Ground Water. 2003 Jul-Aug;41(4):420-30. doi: 10.1111/j.1745-6584.2003.tb02376.x.
In ground water flow system models with hydraulic-head observations but without significant imposed or observed flows, extreme parameter correlation generally exists. As a result, hydraulic conductivity and recharge parameters cannot be uniquely estimated. In complicated problems, such correlation can go undetected even by experienced modelers. Extreme parameter correlation can be detected using parameter correlation coefficients, but their utility depends on the presence of sufficient, but not excessive, numerical imprecision of the sensitivities, such as round-off error. This work investigates the information that can be obtained from parameter correlation coefficients in the presence of different levels of numerical imprecision, and compares it to the information provided by an alternative method called the singular value decomposition (SVD). Results suggest that (1) calculated correlation coefficients with absolute values that round to 1.00 were good indicators of extreme parameter correlation, but smaller values were not necessarily good indicators of lack of correlation and resulting unique parameter estimates; (2) the SVD may be more difficult to interpret than parameter correlation coefficients, but it required sensitivities that were one to two significant digits less accurate than those that required using parameter correlation coefficients; and (3) both the SVD and parameter correlation coefficients identified extremely correlated parameters better when the parameters were more equally sensitive. When the statistical measures fail, parameter correlation can be identified only by the tedious process of executing regression using different sets of starting values, or, in some circumstances, through graphs of the objective function.
在具有水头观测值但没有显著的施加或观测流量的地下水流系统模型中,通常存在极端参数相关性。因此,水力传导率和补给参数无法唯一估计。在复杂问题中,即使是经验丰富的建模人员也可能检测不到这种相关性。可以使用参数相关系数来检测极端参数相关性,但其效用取决于灵敏度存在足够但不过度的数值不精确性(如舍入误差)。这项工作研究了在存在不同程度数值不精确性的情况下从参数相关系数中可以获得的信息,并将其与一种称为奇异值分解(SVD)的替代方法提供的信息进行比较。结果表明:(1)计算得到的绝对值四舍五入后为1.00的相关系数是极端参数相关性的良好指标,但较小的值不一定是缺乏相关性以及由此产生唯一参数估计值的良好指标;(2)奇异值分解可能比参数相关系数更难解释,但它所需的灵敏度比使用参数相关系数所需的灵敏度精度低一到两位有效数字;(3)当参数的敏感性更相当时,奇异值分解和参数相关系数都能更好地识别高度相关参数。当统计量失效时,只能通过使用不同起始值集执行回归的繁琐过程,或者在某些情况下通过目标函数的图形来识别参数相关性。