Zhang Qinghai, Kelly Jeffery W
Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road BCC265, La Jolla, California 92037, USA.
Biochemistry. 2003 Jul 29;42(29):8756-61. doi: 10.1021/bi030077a.
Conservative mutation of transthyretin's surface residues can predispose an individual to familial amyloidosis by dramatically changing the energetics of misfolding. Senile systemic amyloidosis (SSA), however, cannot be explained in this fashion because wild-type (WT) transthyretin (TTR) misfolds and misassembles into amyloid. Since various modifications of the SH functionality of Cys10 have been reported in humans, we sought to understand the extent to which these modifications alter the stability and amyloidosis of WT TTR as a possible explanation for SSA. Homotetrameric Cys10 TTR variants, including TTR-Cys, TTR-GSH, TTR-CysGly, and S-sulfonated TTR, were chemically synthesized starting with WT TTR. The TTR-Cys, TTR-GSH, and TTR-CysGly isoforms are more amyloidogenic than WT at the higher end of the acidic pH range (pH 4.4-5.0), and they are similarly destabilized relative to WT TTR toward urea denaturation. They exhibit rates of urea-mediated tetramer dissociation (pH 7) and MeOH-facilitated fibril formation similar to those of WT TTR. Under mildly acidic conditions (pH 4.8), the amyloidogenesis rates of the mixed disulfide TTR variants are much faster than the WT rate. S-Sulfonated TTR is less amyloidogenic and forms fibrils more slowly than WT under acidic conditions, yet it exhibits a stability and rates of tetramer dissociation similar to those of WT TTR when subjected to urea denaturation. Conversion of the Cys10 SH group to a mixed disulfide with the amino acid Cys, the CysGly peptide, or glutathione increases amyloidogenicity and the amyloidogenesis rate above pH 4.6, conditions under which TTR probably forms fibrils in humans. Hence, these modifications may play an important role in human amyloidosis.
甲状腺素运载蛋白表面残基的保守性突变可通过显著改变错误折叠的能量学,使个体易患家族性淀粉样变性。然而,老年系统性淀粉样变性(SSA)无法用这种方式解释,因为野生型(WT)甲状腺素运载蛋白(TTR)会错误折叠并组装成淀粉样蛋白。由于在人类中已报道了Cys10的SH功能的各种修饰,我们试图了解这些修饰在多大程度上改变WT TTR的稳定性和淀粉样变性,作为SSA的一种可能解释。从WT TTR开始化学合成了同四聚体Cys10 TTR变体,包括TTR-Cys、TTR-GSH、TTR-CysGly和S-磺化TTR。在酸性pH范围较高端(pH 4.4-5.0),TTR-Cys、TTR-GSH和TTR-CysGly异构体比WT更具淀粉样变性,并且相对于WT TTR,它们在尿素变性方面同样不稳定。它们表现出的尿素介导的四聚体解离速率(pH 7)和甲醇促进的纤维形成速率与WT TTR相似。在轻度酸性条件下(pH 4.8),混合二硫键TTR变体的淀粉样变性速率比WT速率快得多。S-磺化TTR在酸性条件下比WT的淀粉样变性更低,形成纤维的速度更慢,但在进行尿素变性时,它表现出与WT TTR相似的稳定性和四聚体解离速率。将Cys10的SH基团转化为与氨基酸Cys、CysGly肽或谷胱甘肽形成的混合二硫键,会增加淀粉样变性和pH 4.6以上的淀粉样变性速率,在这种条件下TTR可能在人体内形成纤维。因此,这些修饰可能在人类淀粉样变性中起重要作用。