Chen Shuyuan, Shohet Ralph V, Bekeredjian Raffi, Frenkel Peter, Grayburn Paul A
Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical School, Dallas, Texas, USA.
J Am Coll Cardiol. 2003 Jul 16;42(2):301-8. doi: 10.1016/s0735-1097(03)00627-2.
This study was undertaken to optimize echocardiographic parameters for successful gene delivery to the heart and to extend the method from adenoviral to plasmid deoxyribonucleic acid (DNA).
We have previously shown that ultrasound-targeted microbubble destruction can direct tissue expression of adenoviral transgenes to the heart. The optimal echocardiographic parameters for this technique have not been reported.
Adenoviral or plasmid DNA encoding the luciferase reporter gene was incorporated into liposome microbubbles and infused intravenously into anesthetized rats. We systematically evaluated the effects of ultrasound parameters known to influence microbubble destruction, including electrocardiogram (ECG) triggering, ultrasound frequency, mode of ultrasound, and mechanical index, on gene expression in rat myocardium four days after treatment. In addition, gene expression in heart, liver, and skeletal muscle were compared between adenoviral and plasmid DNA.
Optimal ultrasound parameters for this technique include low-transmission frequency (1.3 MHz), maximal mechanical index, and ECG triggering to allow complete filling of the myocardial capillary bed by microbubbles. No difference was seen between ultraharmonics and power Doppler mode. Using adenoviral DNA, optimal ultrasound parameters yielded myocardial luciferase activity on the order of 104 relative light units/mg protein/min but with even higher liver activity. Plasmid DNA was expressed in rat myocardium at similar levels but without detectable liver expression.
Ultrasound-targeted microbubble destruction can be used to deliver adenoviral or plasmid DNA to the myocardium. This technique holds great promise in applying the rapidly expanding repertoire of gene therapies being developed for cardiac disease.
本研究旨在优化超声心动图参数,以实现向心脏成功递送基因,并将该方法从腺病毒扩展至质粒脱氧核糖核酸(DNA)。
我们先前已表明,超声靶向微泡破坏可使腺病毒转基因在心脏中实现组织表达。该技术的最佳超声心动图参数尚未见报道。
将编码荧光素酶报告基因的腺病毒或质粒DNA掺入脂质体微泡中,并经静脉注入麻醉大鼠体内。我们系统评估了已知会影响微泡破坏的超声参数,包括心电图(ECG)触发、超声频率、超声模式和机械指数,对治疗后四天大鼠心肌中基因表达的影响。此外,还比较了腺病毒DNA和质粒DNA在心脏、肝脏和骨骼肌中的基因表达情况。
该技术的最佳超声参数包括低发射频率(1.3MHz)、最大机械指数以及ECG触发,以使微泡完全充盈心肌毛细血管床。超谐波模式和功率多普勒模式之间未见差异。使用腺病毒DNA时,最佳超声参数产生的心肌荧光素酶活性约为104相对光单位/毫克蛋白质/分钟,但肝脏活性更高。质粒DNA在大鼠心肌中的表达水平相似,但在肝脏中未检测到表达。
超声靶向微泡破坏可用于将腺病毒或质粒DNA递送至心肌。该技术在应用为心脏病开发的迅速扩展的基因治疗方法方面具有巨大潜力。