Suppr超能文献

铜对PrP[106-126]突变朊病毒肽片段离子通道的调节作用

Copper modulation of ion channels of PrP[106-126] mutant prion peptide fragments.

作者信息

Kourie J I, Kenna B L, Tew D, Jobling M F, Curtain C C, Masters C L, Barnham K J, Cappai R

机构信息

Membrane Transport Group, Department of Chemistry, The Faculties, The Australian National University, Canberra City, Australian Capital Territory, 0200 Australia.

出版信息

J Membr Biol. 2003 May 1;193(1):35-45. doi: 10.1007/s00232-002-2005-5.

Abstract

We have shown previously that the protease-resistant and neurotoxic prion peptide fragment PrP[106-126] of human PrP incorporates into lipid bilayer membranes to form heterogeneous ion channels, one of which is a Cu(2+)-sensitive fast cation channel. To investigate the role of PrP[106-126]'s hydrophobic core, AGAAAAGA, on its ability to form ion channels and their regulation with Cu(2+), we used the lipid-bilayer technique to examine membrane currents induced as a result of PrP[106-126] (AA/SS) and PrP[106-126] (VVAA/SSSS) interaction with lipid membranes and channel formation. Channel analysis of the mutant (VVAAA/SSS), which has a reduced hydrophobicity due to substitution of hydrophobic residues with the hydrophilic serine residue, showed a significant change in channel activity, which reflects a decrease in the beta-sheet structure, as shown by CD spectroscopy. One of the channels formed by the PrP[106-126] mutant has fast kinetics with three modes: burst, open and spike. The biophysical properties of this channel are similar to those of channels formed with other aggregation-prone amyloids, indicating their ability to form the common beta sheet-based channel structure. The current-voltage (I-V) relationship of the fast cation channel, which had a reversal potential, E(rev), between -40 and -10 mV, close to the equilibrium potential for K(+) ( E(K) = -35 mV), exhibited a sigmoidal shape. The value of the maximal slope conductance (g(max)) was 58 pS at positive potentials between 0 and 140 mV. Cu(2+) shifted the kinetics of the channel from being in the open and "burst" states to the spike mode. Cu(2+) reduced the probability of the channel being open (P(o)) and the mean open time (T(o)) and increased the channel's opening frequency (F(o)) and the mean closed time (T(c)) at a membrane potential ( V(m)) between +20 and + 140 mV. The fact that Cu(2+) induced changes in the kinetics of this channel with no changes in its conductance, indicates that Cu(2+) binds at the mouth of the channel via a fast channel block mechanism. The Cu(2+)-induced changes in the kinetic parameters of this channel suggest that the hydrophobic core is not a ligand Cu(2+) site, and they are in agreement with the suggestion that the Cu(2+)-binding site is located at M(109) and H(111) of this prion fragment. Although the data indicate that the hydrophobic core sequence plays a role in PrP[106-126] channel formation, it is not a binding site for Cu(2+). We suggest that the role of the hydrophobic region in modulating PrP toxicity is to influence PrP assembly into neurotoxic channel conformations. Such conformations may underlie toxicity observed in prion diseases. We further suggest that the conversions of the normal cellular isoform of prion protein (PrP(c)) to abnormal scrapie isoform (PrP(Sc)) and intermediates represent conversions to protease-resistant neurotoxic channel conformations.

摘要

我们之前已经表明,人朊蛋白的蛋白酶抗性和神经毒性朊蛋白肽片段PrP[106 - 126]可整合到脂质双分子层膜中形成异质性离子通道,其中之一是对Cu(2+)敏感的快速阳离子通道。为了研究PrP[106 - 126]的疏水核心AGAAAAGA对其形成离子通道的能力以及对其Cu(2+)调节作用的影响,我们使用脂质双分子层技术来检测由于PrP[106 - 126](AA/SS)和PrP[106 - 126](VVAA/SSSS)与脂质膜相互作用及通道形成所诱导的膜电流。对突变体(VVAAA/SSS)进行通道分析,该突变体由于用亲水性丝氨酸残基取代疏水性残基而导致疏水性降低,结果显示通道活性有显著变化,这反映了β - 折叠结构的减少,如圆二色光谱所示。由PrP[106 - 126]突变体形成的其中一个通道具有快速动力学,有三种模式:爆发、开放和尖峰。该通道的生物物理特性与由其他易于聚集的淀粉样蛋白形成的通道相似,表明它们有能力形成基于β - 折叠的共同通道结构。快速阳离子通道的电流 - 电压(I - V)关系具有反转电位E(rev),在 - 40至 - 10 mV之间,接近K(+)的平衡电位(E(K)= - 35 mV),呈S形。在0至140 mV的正电位下,最大斜率电导(g(max))的值为58 pS。Cu(2+)使通道的动力学从开放和“爆发”状态转变为尖峰模式。在膜电位(V(m))为 + 20至 + 140 mV之间时,Cu(2+)降低了通道开放的概率(P(o))和平均开放时间(T(o)),并增加了通道的开放频率(F(o))和平均关闭时间(T(c))。Cu(2+)诱导该通道动力学变化而其电导无变化这一事实表明,Cu(2+)通过快速通道阻断机制结合在通道口。Cu(2+)诱导的该通道动力学参数变化表明疏水核心不是Cu(2+)的配体结合位点,这与Cu(2+)结合位点位于该朊蛋白片段的M(109)和H(111)处的观点一致。尽管数据表明疏水核心序列在PrP[106 - 126]通道形成中起作用,但它不是Cu(2+)的结合位点。我们认为疏水区域在调节PrP毒性中的作用是影响PrP组装成神经毒性通道构象。这种构象可能是朊病毒疾病中所观察到的毒性的基础。我们进一步认为,朊蛋白正常细胞异构体(PrP(c))向异常瘙痒病异构体(PrP(Sc))及中间体的转变代表了向蛋白酶抗性神经毒性通道构象的转变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验