Balázsi Gábor, Kay Krin A, Barabási Albert-László, Oltvai Zoltán N
Department of Pathology, Feinberg School of Medicine, Northwestern University, Ward Building 6-204, 303 East Chicago Avenue, Chicago, IL 60611, USA.
Nucleic Acids Res. 2003 Aug 1;31(15):4425-33. doi: 10.1093/nar/gkg485.
Global transcriptome data is increasingly combined with sophisticated mathematical analyses to extract information about the functional state of a cell. Yet the extent to which the results reflect experimental bias at the expense of true biological information remains largely unknown. Here we show that the spatial arrangement of probes on microarrays and the particulars of the printing procedure significantly affect the log-ratio data of mRNA expression levels measured during the Saccharomyces cerevisiae cell cycle. We present a numerical method that filters out these technology-derived contributions from the existing transcriptome data, leading to improved functional predictions. The example presented here underlines the need to routinely search and compensate for inherent experimental bias when analyzing systematically collected, internally consistent biological data sets.
全球转录组数据越来越多地与复杂的数学分析相结合,以提取有关细胞功能状态的信息。然而,这些结果在多大程度上以牺牲真实生物学信息为代价反映了实验偏差,在很大程度上仍不为人知。在这里,我们表明微阵列上探针的空间排列和印刷过程的细节会显著影响酿酒酵母细胞周期中测量的mRNA表达水平的对数比值数据。我们提出了一种数值方法,该方法从现有的转录组数据中滤除这些技术衍生的影响,从而改进功能预测。这里给出的例子强调了在分析系统收集的、内部一致的生物学数据集时,需要常规地搜索并补偿固有的实验偏差。