Kramer Beat P, Weber Wilfried, Fussenegger Martin
Institute of Biotechnology, Swiss Federal Institute of Technology, ETH Zurich, CH-8093 Zurich, Switzerland.
Biotechnol Bioeng. 2003 Sep 30;83(7):810-20. doi: 10.1002/bit.10731.
Prototype drug-adjustable heterologous transcription control systems designed for gene therapy applications typically show sigmoid dose-response characteristics and enable fine-tuning of therapeutic transgenes only within a narrow inducer concentration range of a few nanograms. However, the design of clinical dosing regimes which achieve tissue-specific concentrations with nanogram precision is yet a "mission impossible." Therefore, most of today's transcription control systems operate as ON/OFF switches and not in a true adjustable mode. The availability of robust transcription control configurations which lock expression of a single therapeutic transgene at desired levels in response to fixed clinical doses of different inducers rather than minute concentration changes of a single inducer would be highly desirable. Based on in silico predictions, we have constructed a variety of mammalian artificial regulatory networks by interconnecting the tetracycline- (TET(OFF)), streptogramin- (PIP(OFF)), and macrolide- (E(OFF)) repressible gene regulation systems as linear (auto)regulatory cascades. These networks enable multilevel expression control of several transgenes in response to different antibiotics or allow titration of a single transgene to four discrete expression levels by clinical dosing of a single antibiotic: 1) high expression in the absence of any antibiotic (+++), 2) medium level expression following addition of tetracycline (++), 3) low level expression in response to the macrolide erythromycin (+), and 4) complete repression by streptogramins such as pristinamycin (-). The first-generation artificial regulatory networks exemplify modular interconnections of different heterologous gene regulations systems to achieve multigene expression, fine-tuning, or to design novel control networks with unprecedented transgene regulation properties. Such higher-level transcription control modalities will lead the way towards composite artificial regulatory networks able to effect complex therapeutic interventions in future gene therapy and tissue engineering scenarios.
为基因治疗应用设计的原型药物可调异源转录控制系统通常呈现S形剂量反应特征,并且仅在几纳克的狭窄诱导剂浓度范围内才能对治疗性转基因进行微调。然而,设计能够以纳克精度实现组织特异性浓度的临床给药方案仍然是一项“不可能完成的任务”。因此,当今大多数转录控制系统都作为开/关开关运行,而不是以真正的可调模式运行。非常需要有强大的转录控制配置,能够根据不同诱导剂的固定临床剂量而非单一诱导剂的微小浓度变化,将单个治疗性转基因的表达锁定在所需水平。基于计算机模拟预测,我们通过将四环素(TET(OFF))、链阳菌素(PIP(OFF))和大环内酯(E(OFF))可抑制基因调控系统作为线性(自)调控级联相互连接,构建了多种哺乳动物人工调控网络。这些网络能够响应不同抗生素对多个转基因进行多级表达控制,或者通过对单一抗生素进行临床给药将单个转基因滴定到四个离散的表达水平:1)在无任何抗生素时高表达(+++),2)添加四环素后中等水平表达(++),3)对大环内酯类红霉素有反应时低水平表达(+),4)被链阳菌素如 pristinamycin完全抑制(-)。第一代人工调控网络例证了不同异源基因调控系统的模块化互连,以实现多基因表达、微调或设计具有前所未有的转基因调控特性的新型控制网络。这种更高层次的转录控制模式将引领通往复合人工调控网络的道路,这些网络能够在未来的基因治疗和组织工程场景中实现复杂的治疗干预。