Pelphrey Kevin A, Mitchell Teresa V, McKeown Martin J, Goldstein Jeremy, Allison Truett, McCarthy Gregory
Duke-UNC Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina 27710, USA.
J Neurosci. 2003 Jul 30;23(17):6819-25. doi: 10.1523/JNEUROSCI.23-17-06819.2003.
Many functional neuroimaging studies of biological motion have used as stimuli point-light displays of walking figures and compared the resulting activations with those evoked by the same display elements moving in a random or noncoherent manner. Although these studies have established that biological motion activates the superior temporal sulcus (STS), the use of random motion controls has left open the possibility that coordinated and meaningful nonbiological motion might activate these same brain regions and thus call into question their specificity for processing biological motion. Here we used functional magnetic resonance imaging and an anatomical region-of-interest approach to test a hierarchy of three questions regarding activity within the STS. First, by comparing responses in the STS with animations of human and robot walking figures, we determined (1) that the STS is sensitive to biological motion itself, not merely to the superficial characteristics of the stimulus. Then we determined that the STS responds more strongly to biological motion (as conveyed by the walking robot) than to (2) a nonmeaningful but complex nonbiological motion (a disjointed mechanical figure) and (3) a complex and meaningful nonbiological motion (the movements of a grandfather clock). In subsequent whole-brain voxel-based analyses, we confirmed robust STS activity that was strongly right lateralized. In addition, we observed significant deactivations in the STS that differentiated biological and nonbiological motion. These voxel-based analyses also revealed regions of motion-related positive activity in other brain regions, including MT or V5, fusiform gyri, right premotor cortex, and the intraparietal sulci.
许多关于生物运动的功能性神经成像研究都使用行走人物的点光显示作为刺激,并将由此产生的激活与由相同显示元素以随机或非连贯方式移动所诱发的激活进行比较。尽管这些研究已经证实生物运动会激活颞上沟(STS),但使用随机运动对照仍存在一种可能性,即协调且有意义的非生物运动可能会激活这些相同的脑区,从而对它们处理生物运动的特异性提出质疑。在这里,我们使用功能磁共振成像和解剖学感兴趣区域方法来测试关于STS内活动的三个问题的层次结构。首先,通过将STS中的反应与人类和机器人行走人物的动画进行比较,我们确定:(1)STS对生物运动本身敏感,而不仅仅是对刺激的表面特征敏感。然后我们确定,STS对生物运动(如行走机器人所传达的)的反应比对(2)无意义但复杂的非生物运动(一个脱节的机械图形)和(3)复杂且有意义的非生物运动(一个落地大座钟的运动)的反应更强烈。在随后基于全脑体素的分析中,我们证实了STS有强大的活动,且强烈偏向右侧。此外,我们观察到STS中存在显著的失活,这区分了生物运动和非生物运动。这些基于体素的分析还揭示了其他脑区与运动相关的正性活动区域,包括MT或V5、梭状回、右侧运动前皮层和顶内沟。