Suppr超能文献

使用新型预后模型预测重症急性胰腺炎早期的致命结局。

Predicting fatal outcome in the early phase of severe acute pancreatitis by using novel prognostic models.

作者信息

Halonen Kimmo I, Leppäniemi Ari K, Lundin Johan E, Puolakkainen Pauli A, Kemppainen Esko A, Haapiainen Reijo K

机构信息

Department of Gastroenterological and General Surgery, Meilahti Hospital, Helsinki University Central Hospital, Helsinki, Finland.

出版信息

Pancreatology. 2003;3(4):309-15. doi: 10.1159/000071769.

Abstract

BACKGROUND/AIMS: Survival in acute pancreatitis and particularly in severe acute and necrotizing pancreatitis is a combination of therapy-associated and patient-related factors. There are only few relevant methods for predicting fatal outcome in acute pancreatitis. Scores such as Ranson, Imrie, Blamey, and APACHE II are practical in assessing the severity of the disease, but are not sufficiently validated for predicting fatal outcome among patients with severe acute pancreatitis. The aim of this study was to construct a novel prediction model for predicting fatal outcome in the early phase of severe acute pancreatitis (SAP) and to compare this model with previously reported predictive systems.

METHODS

Hospital records of 253 patients with SAP were retrospectively analyzed. 234 patients with adequate data were included to the test set to construct five logistic regression and three artificial neural network (ANN) models. Two models were tested in an independent prospective validation set of 60 consecutive patients with SAP and compared with previously reported predictive systems.

RESULTS

The prediction model considered optimal was a logistic model with four variables: age, highest serum creatinine value within 60-72 h from primary admission, need for mechanical ventilation, and chronic health status. In the validation set, the predictive accuracy, determined by the area under the receiver operating characteristic curve value, was 0.862 for the chosen model, 0.847 for the ANN model using eight variables, 0.817 for APACHE II, 0.781 for multiple organ dysfunction score, 0.655 for Ranson, and 0.536 for Imrie scores.

CONCLUSIONS

Ranson and Imrie scores are inaccurate indicators of the mortality in SAP. A novel predictive model based on four variables can reach at least the same predictive performance as the APACHE II system with 14 variables.

摘要

背景/目的:急性胰腺炎,尤其是重症急性坏死性胰腺炎患者的生存情况是治疗相关因素和患者自身因素共同作用的结果。目前预测急性胰腺炎患者死亡结局的相关方法较少。诸如兰森(Ranson)、伊姆里(Imrie)、布莱米(Blamey)和急性生理与慢性健康状况评分系统Ⅱ(APACHE II)等评分在评估疾病严重程度方面具有实用性,但在预测重症急性胰腺炎患者的死亡结局方面尚未得到充分验证。本研究的目的是构建一种用于预测重症急性胰腺炎(SAP)早期死亡结局的新型预测模型,并将该模型与先前报道的预测系统进行比较。

方法

回顾性分析253例SAP患者的医院记录。将234例数据完整的患者纳入测试集,构建5个逻辑回归模型和3个人工神经网络(ANN)模型。在一个由60例连续的SAP患者组成的独立前瞻性验证集中对其中2个模型进行测试,并与先前报道的预测系统进行比较。

结果

所考虑的最佳预测模型是一个包含4个变量的逻辑模型:年龄、首次入院后60 - 72小时内的最高血清肌酐值、机械通气需求以及慢性健康状况。在验证集中,可以通过受试者工作特征曲线下面积值来确定预测准确性,所选模型的预测准确性为0.862,使用8个变量的ANN模型为0.847,APACHE II为0.817,多器官功能障碍评分为0.781,兰森评分为0.655,伊姆里评分为0.536。

结论

兰森和伊姆里评分在预测SAP患者死亡率方面并不准确。一种基于4个变量的新型预测模型至少可以达到与包含14个变量的APACHE II系统相同的预测性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验