Pradines B, Vial H, Olliaro P
Unité de Parasitologie, Institut de Médecine Tropicale du Service de Santé des Armées, Bd, Charles Livon, Parc du Pharo, BP 46, 13998 Marseille-Armées, France.
Med Trop (Mars). 2003;63(1):79-98.
Rapid development of significant resistance to antimalarials has been a major force driving research to identify and develop new drugs. Recent progress in this field promises to lead to a much greater range of antimalarial agents. The availability of a broader battery of drugs should provide a partial solution to the dilemma faced by malarial control agencies, i.e., distributing antimalarial drugs as widely as possible without enhancing resistance. Avenues of research for development of new antimalarials include lipid metabolism, degradation of hemoglobin and proteins, interaction with molecule transport, iron metabolism, apicoplasty and signal transduction. Throughout the course of evolution, micro-organisms have thwarted traps set by the environment including those designed by man. One can but hope that the different approaches now being implemented on a worldwide bases will overcome the defense mechanisms that Plasmodium have deployed in their long co-evolution with humans and anopheles.
对抗疟药物产生显著耐药性的迅速发展一直是推动新药研发的主要力量。该领域的最新进展有望带来更多种类的抗疟药物。更多种类药物的可获得性应能部分解决疟疾控制机构面临的困境,即在不增强耐药性的情况下尽可能广泛地分发抗疟药物。新型抗疟药物的研发途径包括脂质代谢、血红蛋白和蛋白质降解、与分子转运的相互作用、铁代谢、顶质体形成和信号转导。在整个进化过程中,微生物一直能避开包括人类设计的在内的环境所设陷阱。人们只能寄希望于目前在全球范围内实施的不同方法能够克服疟原虫在与人类和按蚊长期共同进化过程中所部署的防御机制。