Boros László G, Steinkamp Mara P, Fleming Judith C, Lee Wai-Nang Paul, Cascante Marta, Neufeld Ellis J
Stable Isotope Research Laboratory, Harbor-University of California, Los Angeles Research and Education Institute, UCLA School of Medicine, 1124 West Carson St, RB1, Torrance, CA 90502, USA.
Blood. 2003 Nov 15;102(10):3556-61. doi: 10.1182/blood-2003-05-1537. Epub 2003 Jul 31.
Fibroblasts from patients with thiamine-responsive megaloblastic anemia (TRMA) syndrome with diabetes and deafness undergo apoptotic cell death in the absence of supplemental thiamine in their cultures. The basis of megaloblastosis in these patients has not been determined. Here we use the stable [1,2-13C2]glucose isotope-based dynamic metabolic profiling technique to demonstrate that defective high-affinity thiamine transport primarily affects the synthesis of nucleic acid ribose via the nonoxidative branch of the pentose cycle. RNA ribose isolated from TRMA fibroblasts in thiamine-depleted cultures shows a time-dependent decrease in the fraction of ribose derived via transketolase, a thiamine-dependent enzyme in the pentose cycle. The fractional rate of de novo ribose synthesis from glucose is decreased several fold 2 to 4 days after removal of thiamine from the culture medium. No such metabolic changes are observed in wild-type fibroblasts or in TRMA mutant cells in thiamine-containing medium. Fluxes through glycolysis are similar in TRMA versus control fibroblasts in the pentose and TCA cycles. We conclude that reduced nucleic acid production through impaired transketolase catalysis is the underlying biochemical disturbance that likely induces cell cycle arrest or apoptosis in bone marrow cells and leads to the TRMA syndrome in patients with defective high-affinity thiamine transport.
患有伴有糖尿病和耳聋的硫胺素反应性巨幼细胞贫血(TRMA)综合征的患者的成纤维细胞,在其培养物中缺乏补充硫胺素的情况下会发生凋亡性细胞死亡。这些患者巨幼细胞贫血的病因尚未确定。在此,我们使用基于稳定的[1,2-¹³C₂]葡萄糖同位素的动态代谢分析技术来证明,高亲和力硫胺素转运缺陷主要通过戊糖循环的非氧化分支影响核酸核糖的合成。从硫胺素缺乏的培养物中的TRMA成纤维细胞分离出的RNA核糖显示,通过转酮醇酶(戊糖循环中的一种硫胺素依赖性酶)衍生的核糖部分呈时间依赖性下降。从培养基中去除硫胺素后2至4天,由葡萄糖从头合成核糖的分数速率降低了几倍。在含硫胺素的培养基中,野生型成纤维细胞或TRMA突变细胞未观察到此类代谢变化。在戊糖和三羧酸循环中,TRMA成纤维细胞与对照成纤维细胞的糖酵解通量相似。我们得出结论,通过受损的转酮醇酶催化导致核酸生成减少是潜在的生化紊乱,这可能会诱导骨髓细胞的细胞周期停滞或凋亡,并导致高亲和力硫胺素转运缺陷患者出现TRMA综合征。