Banan A, Fields J Z, Zhang L J, Shaikh M, Farhadi A, Keshavarzian A
Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA.
J Pharmacol Exp Ther. 2003 Oct;307(1):53-66. doi: 10.1124/jpet.103.053835. Epub 2003 Jul 31.
Oxidant damage and gut barrier disruption contribute to the pathogenesis of a variety of inflammatory gastrointestinal disorders, including inflammatory bowel disease (IBD). In our studies using a model of the gastrointestinal (GI) epithelial barrier, monolayers of intestinal (Caco-2) cells, we investigated damage to and protection of the monolayer barrier. We reported that activation of nuclear factor-kappaB (NF-kappaB) via degradation of its endogenous inhibitor I-kappaBalpha is key to oxidant-induced disruption of barrier integrity and that growth factor (epidermal growth factor, EGF) protects against this injury by stabilizing the cytoskeletal filaments. Protein kinase C (PKC) activation seems to be required for monolayer maintenance, especially activation of the atypical zeta isoform of PKC. In an attempt to investigate, at the molecular level, the fundamental events underlying EGF protection against oxidant disruption, we tested the intriguing hypothesis that EGF-induced activation of PKC-zeta prevents oxidant-induced activation of NF-kappaB and the consequences of NF-kappaB activation, namely, cytoskeletal and barrier disruption. Monolayers of wild-type (WT) Caco-2 cells were incubated with oxidant (H2O2) with or without EGF or modulators. In other studies, we used the first gastrointestinal cell clones created by stable transfection of varying levels (1-5 microg) of cDNA to either overexpress PKC-zeta or to inhibit its expression. Transfected cell clones were then pretreated with EGF or a PKC activator (diacylglycerol analog 1-oleoyl-2-acetyl-glycerol, OAG) before oxidant. We monitored the following endpoints: monolayer barrier integrity, stability of the microtubule cytoskeleton, subcellular distribution and activity of the PKC-zeta isoform, intracellular levels and phosphorylation of the NF-kappaB inhibitor I-kappaBalpha, and nuclear translocation and activity of NF-kappaB subunits p65 and p50. Monolayers were also fractionated and processed to assess alterations in the structural protein of the microtubules, polymerized tubulin (S2), and monomeric tubulin (S1). Our data indicated that relative to WT monolayers exposed only to oxidant, pretreatment with EGF protected cell monolayers by 1) increasing native PKC-zeta activity; 2) decreasing several variables related to NF-kappaB activation [NF-kappaB (both p50 and p65 subunits) nuclear translocation, NF-kappaB subunits activity, I-kappaBalpha degradation, and phosphorylation]; 3) increasing stable tubulin (increased polymerized S2 tubulin and decreased monomeric S1 tubulin); 4) maintaining the cytoarchitectural integrity of microtubules; and 5) preventing hyperpermeability (barrier disruption). In addition, relative to WT cells exposed to oxidant, monolayers of transfected cells stably overexpressing PKC-zeta (approximately 3.0-fold increase) were protected as indicated by decreases in all measures of NF-kappaB activation as well as enhanced stability of microtubule cytoarchitecture and barrier function. Overexpression induced stabilization of I-kappaBalpha and inactivation of NF-kappaB was OAG-independent, although EGF potentiated this protection. Approximately 90% of the overexpressed PKC-zeta resided in particulate (membrane + cytoskeletal) fractions (with less than 10% in cytosolic fractions), indicating constitutive activation of the zeta isoform of PKC. Furthermore, antisense transfection to stably inhibit native PKC-zeta expression (-95%) and activation (-99%) prevented all measures of EGF-induced protection against NF-kappaB activation and monolayer disruption. We conclude the following: 1) EGF protects against oxidant disruption of the intestinal barrier integrity, in large part, through the activation of PKC-zeta and inactivation of NF-kappaB (an inflammatory mediator); 2) activation of PKC-zeta is by itself required for monolayer protection against oxidant stress of NF-kappaB activation; 3) the mechanism underlying this novel biological effect of the atypical PKC isoform zeta seems to involve suppression of phosphorylation and enhancement of stabilization of I-kappaBalpha; and 4) development of agents that can mimic or enhance PKC-zeta-induced suppression of NF-kappaB activation may be a useful therapeutic strategy for preventing oxidant damage to GI mucosal epithelium in disorders such as IBD. To our knowledge, this is the first report that PKC-zeta can inhibit the dynamics of NF-kappaB and cytoskeletal disassembly in cells.
氧化损伤和肠道屏障破坏参与多种炎症性胃肠疾病的发病机制,包括炎症性肠病(IBD)。在我们使用胃肠道(GI)上皮屏障模型——肠(Caco-2)细胞单层进行的研究中,我们调查了单层屏障的损伤和保护情况。我们报道,通过降解其内源性抑制剂I-κBα激活核因子-κB(NF-κB)是氧化剂诱导屏障完整性破坏的关键,并且生长因子(表皮生长因子,EGF)通过稳定细胞骨架丝来保护免受这种损伤。蛋白激酶C(PKC)激活似乎是维持单层细胞所必需的,尤其是PKC的非典型ζ亚型的激活。为了在分子水平上研究EGF保护免受氧化剂破坏的基本事件,我们测试了一个有趣的假设,即EGF诱导的PKC-ζ激活可防止氧化剂诱导的NF-κB激活以及NF-κB激活的后果,即细胞骨架和屏障破坏。将野生型(WT)Caco-2细胞单层与氧化剂(H2O2)一起孵育,同时或不添加EGF或调节剂。在其他研究中,我们使用通过稳定转染不同水平(1 - 5μg)的cDNA创建的首批胃肠道细胞克隆,以过表达PKC-ζ或抑制其表达。然后在氧化剂处理之前,用EGF或PKC激活剂(二酰基甘油类似物1-油酰基-2-乙酰基甘油,OAG)预处理转染的细胞克隆。我们监测了以下终点:单层屏障完整性、微管细胞骨架的稳定性、PKC-ζ亚型的亚细胞分布和活性、NF-κB抑制剂I-κBα的细胞内水平和磷酸化,以及NF-κB亚基p65和p50的核转位和活性。还对单层细胞进行分级分离和处理,以评估微管结构蛋白、聚合微管蛋白(S2)和单体微管蛋白(S1)的变化。我们的数据表明,相对于仅暴露于氧化剂的WT单层细胞,用EGF预处理可通过以下方式保护细胞单层:1)增加天然PKC-ζ活性;2)减少与NF-κB激活相关的几个变量[NF-κB(p50和p65亚基)核转位、NF-κB亚基活性、I-κBα降解和磷酸化];3)增加稳定的微管蛋白(增加聚合的S2微管蛋白并减少单体S1微管蛋白);4)维持微管的细胞结构完整性;5)防止高通透性(屏障破坏)。此外,相对于暴露于氧化剂的WT细胞,稳定过表达PKC-ζ的转染细胞单层(增加约3.0倍)受到保护,这表现为NF-κB激活的所有测量指标降低以及微管细胞结构和屏障功能的稳定性增强。过表达诱导I-κBα的稳定和NF-κB的失活与OAG无关,尽管EGF增强了这种保护作用。大约90%的过表达PKC-ζ存在于颗粒(膜+细胞骨架)部分(胞质部分少于10%),表明PKC的ζ亚型组成性激活。此外,反义转染以稳定抑制天然PKC-ζ表达(-95%)和激活(-99%)可防止EGF诱导的针对NF-κB激活和单层破坏的所有保护措施。我们得出以下结论:1)EGF主要通过激活PKC-ζ和使NF-κB(一种炎症介质)失活来保护肠道屏障完整性免受氧化剂破坏;2)PKC-ζ的激活本身是单层细胞保护免受NF-κB激活的氧化应激所必需的;3)非典型PKC亚型ζ这种新生物学效应的潜在机制似乎涉及抑制I-κBα的磷酸化并增强其稳定性;4)开发能够模拟或增强PKC-ζ诱导抑制NF-κB激活的药物可能是预防IBD等疾病中GI黏膜上皮氧化损伤的一种有用治疗策略。据我们所知,这是第一篇报道PKC-ζ可抑制细胞中NF-κB动态变化和细胞骨架解聚的文章。