Suppr超能文献

17Beta-estradiol treatment profoundly down-regulates gene expression in spinal cord tissue in mice protected from experimental autoimmune encephalomyelitis.

作者信息

Matejuk Agata, Dwyer Jami, Hopke Corwyn, Vandenbark Arthur A, Offner Halina

机构信息

Department of Neurology, Oregon Health and Science University, Portland, OR 97201, USA.

出版信息

Arch Immunol Ther Exp (Warsz). 2003;51(3):185-93.

Abstract

It is now well documented that experimental autoimmune encephalomyelitis (EAE) can be effectively prevented by estrogen therapy. Previously, we identified a limited set of genes that were altered in spleens of mice protected from EAE by 17beta-estradiol (E2) treatment. As a continuation of these studies, we present here transcriptional changes in genes expressed in spinal cord tissue. The Affymetrix microarray system was used to screen more than 12,000 genes from E2-treated double transgenic (BV8S2 and AV4) female mice protected from EAE vs. control mice with severe EAE. We found that estrogen therapy had a profound inhibitory effect on the expressions of many immune-related genes in spinal cords. Estrogen significantly affected the transcription of 315 genes, 302 of which were down-regulated and only 13 that were up-regulated by > or = 2.4 fold. A number of genes encoding the histocompatibility complex, cytokines/receptors, chemokines, adhesion molecules, and signal transduction proteins were strongly down-regulated (> 20 fold) in estrogen-treated mice to levels similar to those of the spinal cord tissue from unmanipulated mice. The identification of genes with altered expression patterns in the spinal cords of estrogen-treated mice provides unique insight into the process that ultimately results in protection against EAE.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验