Song Jian, Knepper Mark A, Verbalis Joseph G, Ecelbarger Carolyn A
Division of Endocrinology and Metabolism, Department of Medicine, Georgetown University, Box 571412, Washington, DC 20057-1412, USA.
Am J Physiol Renal Physiol. 2003 Dec;285(6):F1125-37. doi: 10.1152/ajprenal.00143.2003. Epub 2003 Aug 5.
Uncontrolled diabetes mellitus (DM) is associated with copious water and sodium losses. We hypothesized that the kidney compensates for these losses by increasing the abundances of key sodium and water transporters and channels. Using targeted proteomic analysis via immunoblotting of kidney homogenates, we examined comprehensive regulation of transport proteins. In three studies, streptozotocin (STZ; 65 mg/kg) or vehicle was administered intraperitoneally to male Sprague-Dawley rats. In study 2, to control for potential renal toxicity of STZ, one group of STZ-treated rats was intensively treated with insulin to control diabetes. In another group, the reversibility of DM and related changes was assessed by treating animals with insulin for the final 4 days. In study 3, we correlated blood glucose to transporter changes by treating animals with different doses of insulin. In study 1, STZ treatment resulted in significantly increased band densities for the type 3 sodium/hydrogen exchanger (NHE3), the thiazide-sensitive Na-Cl cotransporter (NCC), and epithelial sodium channel (ENaC) subunits alpha, beta, and gamma (85- and 70-kDa bands) to 204, 125, 176, 132, 147, and 241% of vehicle mean, respectively. In study 2, aquaporin-2 (AQP2) and AQP3 were increased with DM, but not AQP1 or AQP4. Neither these changes, nor blood glucose itself, could be returned to normal by short-term intensive insulin treatment. Whole kidney abundance of AQP3, the bumetanide-sensitive Na-K-2Cl cotransporter (NKCC2), and gamma-ENaC (85-kDa band) correlated most strongly with blood glucose in study 3. These comprehensive changes would be expected to decrease volume contraction accompanying large-solute and water losses associated with DM.
未控制的糖尿病(DM)与大量水和钠的流失有关。我们假设肾脏通过增加关键钠和水转运蛋白及通道的丰度来补偿这些流失。通过对肾脏匀浆进行免疫印迹的靶向蛋白质组学分析,我们研究了转运蛋白的全面调控。在三项研究中,将链脲佐菌素(STZ;65mg/kg)或赋形剂腹腔注射给雄性Sprague-Dawley大鼠。在研究2中,为了控制STZ的潜在肾毒性,一组接受STZ治疗的大鼠用胰岛素进行强化治疗以控制糖尿病。在另一组中,通过在最后4天用胰岛素治疗动物来评估糖尿病及相关变化的可逆性。在研究3中,我们通过用不同剂量的胰岛素治疗动物来关联血糖与转运蛋白的变化。在研究1中,STZ治疗导致3型钠/氢交换体(NHE3)、噻嗪类敏感的Na-Cl共转运体(NCC)以及上皮钠通道(ENaC)的α、β和γ亚基(85 kDa和70 kDa条带)的条带密度显著增加,分别达到赋形剂组平均值的204%、125%、176%、132%、147%和241%。在研究2中,水通道蛋白2(AQP2)和AQP3随糖尿病增加,但AQP1或AQP4没有增加。短期强化胰岛素治疗既不能使这些变化恢复正常,也不能使血糖本身恢复正常。在研究3中,全肾AQP3、布美他尼敏感的Na-K-2Cl共转运体(NKCC2)和γ-ENaC(85 kDa条带)的丰度与血糖的相关性最强。这些全面的变化预计会减少与糖尿病相关联的大量溶质和水流失所伴随的容量收缩。