Suppr超能文献

Ramified feline microglia selects for distinct variants of feline immunodeficiency virus during early central nervous system infection.

作者信息

Hein Andreas, Schuh Holger, Thiel Simone, Martin Jean-Pierre, Dörries Rüdiger

机构信息

Institute of Medical Microbiology and Hygiene, Mannheim Hospital, Ruprecht-Karls-University Heidelberg, Mannheim, Germany.

出版信息

J Neurovirol. 2003 Aug;9(4):465-76. doi: 10.1080/13550280390218779.

Abstract

It is widely accepted that human immunodeficiency virus (HIV) invades the central nervous system (CNS) shortly after peripheral infection to establish a persistent infection of tissue-resident microglial cells. To what extent this early CNS infection is of pathogenic relevance is a matter of discussion. It is conceivable, however, that infected microglia releases virus variants of enhanced neurotropism and/or neurovirulence compared to peripheral isolates. Moreover, microglial variants may exhibit high resistance to antiviral therapeutics that poorly penetrate into brain tissue. The molecular basis of these biological properties is suspected to be associated with specific sequences in the viral env gene, particularly within the V3 loop. Therefore, we analyzed in the animal model of feline immunodeficiency virus (FIV) infection of cats lentiviral V3 sequences in highly purified microglial cells and blood from acutely infected animals. Compared to the inoculated virus, nucleotide sequence alterations in serum samples were rarely detectable, if at all. In contrast, up to 19 nucleotide exchanges could be identified within FIV V3 from microglia, resulting in a mutation frequency of up to 14.5% with respect to the deduced amino acid sequence. These findings suggest selection of specific virus variants by brain-resident target cells that might have implications for antiretroviral drug design.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验