Suppr超能文献

Focused ultrasound (HIFU) induces localized enhancement of reporter gene expression in rabbit carotid artery.

作者信息

Huber P E, Mann M J, Melo L G, Ehsan A, Kong D, Zhang L, Rezvani M, Peschke P, Jolesz F, Dzau V J, Hynynen K

机构信息

Department of Radiology, Brigham and Womens' Hospital, Harvard Medical School, Boston, MA, USA.

出版信息

Gene Ther. 2003 Sep;10(18):1600-7. doi: 10.1038/sj.gt.3302045.

Abstract

The development of accurate, safe, and efficient gene delivery remains a major challenge towards the realization of gene therapeutic prevention and treatment of cardiovascular diseases. In this study, we investigated the ability of high-intensity focused ultrasound (HIFU), a form of mechanical wave transmission, to act as a noninvasive tool for the enhancement of in vivo gene transfer into rabbit carotid arteries. Segments of the common carotid arteries of New Zealand white rabbits were isolated and infused with plasmid DNA encoding the reporter beta-galactosidase either with or without the addition of ultrasound contrast agent consisting of small (approximately 2-5 microm) gas-filled human albumin microspheres to augment cavitation. Infused arteries were exposed to pulsed ultrasound for 1 min (frequency 0.85 MHz, burst length 50 ms, repetition frequency 1 Hz, duration 60 s, peak pressure amplitude of 15 MPa). At 6.3 MPa, HIFU enhanced gene expression eight-fold, and 17.5-fold in the presence of contrast. We found increasing amounts of beta-galactosidase expression in the carotid vessel with increasing pressure amplitude. This dose-response relation was present with and without contrast. Without contrast, no vessel damage was detected up to 15 MPa, while the addition of contrast induced side effects above a threshold of 6.3 MPa peak pressure. The entire procedure was feasible and safe for the animals, and the results suggest that HIFU has the potential to assist in the noninvasive spatial regulation of gene transfer into the vascular system.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验