Butala Harshala D, Sadana Ajit
Chemical Engineering Department, University of Mississippi, MS 38677-1848, USA.
J Colloid Interface Sci. 2003 Jul 15;263(2):420-31. doi: 10.1016/s0021-9797(03)00338-2.
A fractal analysis is used to model the binding and dissociation kinetics between analytes in solution and estrogen receptors (ER) immobilized on a sensor chip of a surface plasmon resonance (SPR) biosensor. Both cases are analyzed: unliganded as well as liganded. The influence of different ligands is also analyzed. A better understanding of the kinetics provides physical insights into the interactions and suggests means by which appropriate interactions (to promote correct signaling) and inappropriate interactions such as with xenoestrogens (to minimize inappropriate signaling and signaling deleterious to health) may be better controlled. The fractal approach is applied to analyte-ER interaction data available in the literature. Numerical values obtained for the binding and the dissociation rate coefficients are linked to the degree of roughness or heterogeneity (fractal dimension, D(f)) present on the biosensor chip surface. In general, the binding and the dissociation rate coefficients are very sensitive to the degree of heterogeneity on the surface. For example, the binding rate coefficient, k, exhibits a 4.60 order of dependence on the fractal dimension, D(f), for the binding of unliganded and liganded VDR mixed with GST-RXR in solution to Spp-1 VDRE (1,25-dihydroxyvitamin D(3) receptor element) DNA immobilized on a sensor chip surface (Cheskis and Freedman, Biochemistry 35 (1996) 3300-3318). A single-fractal analysis is adequate in some cases. In others (that exhibit complexities in the binding or the dissociation curves) a dual-fractal analysis is required to obtain a better fit. A predictive relationship is also presented for the ratio K(A)(=k/k(d)) as a function of the ratio of the fractal dimensions (D(f)/D(fd)). This has biomedical and environmental implications in that the dissociation and binding rate coefficients may be used to alleviate deleterious effects or enhance beneficial effects by selective modulation of the surface. The K(A) exhibits a 112-order dependence on the ratio of the fractal dimensions for the ligand effects on VDR-RXR interaction with specific DNA.
分形分析用于模拟溶液中分析物与固定在表面等离子体共振(SPR)生物传感器芯片上的雌激素受体(ER)之间的结合和解离动力学。分析了两种情况:未结合配体的以及结合配体的。还分析了不同配体的影响。对动力学有更深入的理解可为相互作用提供物理见解,并提出可能更好地控制适当相互作用(以促进正确信号传导)和不适当相互作用(如与外源性雌激素的相互作用,以尽量减少不适当信号传导和对健康有害的信号传导)的方法。分形方法应用于文献中可用的分析物 - ER相互作用数据。获得的结合和解离速率系数的数值与生物传感器芯片表面存在的粗糙度或异质性程度(分形维数,D(f))相关。一般来说,结合和解离速率系数对表面的异质性程度非常敏感。例如,对于溶液中未结合配体和结合配体的维生素D受体(VDR)与谷胱甘肽 - S - 转移酶 - 视黄酸X受体(GST - RXR)混合物与固定在传感器芯片表面的Spp - 1维生素D反应元件(VDRE,1,25 - 二羟基维生素D(3)受体元件)DNA的结合,结合速率系数k对分形维数D(f)表现出4.60阶的依赖性(Cheskis和Freedman,《生物化学》35 (1996) 3300 - 3318)。在某些情况下,单分形分析就足够了。在其他情况下(结合或解离曲线表现出复杂性),则需要双分形分析才能获得更好的拟合。还给出了作为分形维数之比(D(f)/D(fd))函数的平衡常数K(A)(=k/k(d))的预测关系。这具有生物医学和环境意义,因为解离和结合速率系数可用于通过选择性调节表面来减轻有害影响或增强有益影响。对于配体对VDR - RXR与特定DNA相互作用的影响,K(A)对分形维数之比表现出112阶的依赖性。