Forrest Lucy R, Woolf Thomas B
MRC Dunn Human Nutrition Unit, Wellcome Trust/MRC Building, Cambridge, United Kingdom.
Proteins. 2003 Sep 1;52(4):492-509. doi: 10.1002/prot.10404.
The recent determination of crystal structures for several important membrane proteins opens the way for comparative modeling of their membrane-spanning regions. However, the ability to predict correctly the structures of loop regions, which may be critical, for example, in ligand binding, remains a considerable challenge. To meet this challenge, accurate scoring methods have to discriminate between candidate conformations of an unknown loop structure. Some success in loop prediction has been reported for globular proteins; however, the proximity of membrane protein loops to the lipid bilayer casts doubt on the applicability of the same scoring methods to this problem. In this work, we develop "decoy libraries" of non-native folds generated, using the structures of two membrane proteins, with molecular dynamics and Monte Carlo techniques over a range of temperatures. We introduce a new approach for decoy library generation by constructing a flat distribution of conformations covering a wide range of Calpha-root-mean-square deviation (RMSD) from the native structure; this removes possible bias in subsequent scoring stages. We then score these decoy conformations with effective energy functions, using increasingly more cpu-intensive implicit solvent models, including (1) simple Coulombic electrostatics with constant or distance-dependent dielectrics; (2) atomic solvation parameters; (3) the effective energy function (EEF1) of Lazaridis and Karplus; (4) generalized Born/Analytical Continuum Solvent; and (5) finite-difference Poisson-Boltzmann energy functions. We show that distinction of native-like membrane protein loops may be achieved using effective energies with the assumption of a homogenous environment; thus, the absence of the adjacent lipid bilayer does not affect the scoring ability. In particular, the Analytical Continuum Solvent and finite-difference Poisson-Boltzmann energy functions are seen to be the most powerful scoring functions. Interestingly, the use of the uncharged states of ionizable sidechains is shown to aid prediction, particularly for the simplest energy functions.
最近几种重要膜蛋白晶体结构的确定为其跨膜区域的比较建模开辟了道路。然而,正确预测环区结构的能力仍然是一个巨大的挑战,例如环区在配体结合中可能至关重要。为了应对这一挑战,准确的评分方法必须能够区分未知环结构的候选构象。对于球状蛋白,已经报道了在环预测方面取得的一些成功;然而,膜蛋白环与脂质双层的接近程度让人怀疑同样的评分方法对此问题的适用性。在这项工作中,我们利用两种膜蛋白的结构,通过分子动力学和蒙特卡罗技术在一系列温度下生成了非天然折叠的“诱饵文库”。我们引入了一种生成诱饵文库的新方法,即构建一个构象的均匀分布,其覆盖了与天然结构的一系列Cα均方根偏差(RMSD);这消除了后续评分阶段可能存在的偏差。然后,我们使用越来越耗费CPU的隐式溶剂模型,用有效能量函数对这些诱饵构象进行评分,这些模型包括:(1)具有恒定或距离依赖介电常数的简单库仑静电作用;(2)原子溶剂化参数;(3)Lazaridis和Karplus的有效能量函数(EEF1);(4)广义玻恩/解析连续介质溶剂;(5)有限差分泊松-玻尔兹曼能量函数。我们表明,在假设环境均匀的情况下,使用有效能量可以实现对类似天然膜蛋白环的区分;因此,相邻脂质双层的缺失并不影响评分能力。特别是,解析连续介质溶剂和有限差分泊松-玻尔兹曼能量函数被认为是最强大的评分函数。有趣的是,使用可电离侧链的不带电状态有助于预测,特别是对于最简单的能量函数。