Suppr超能文献

离子水凝胶溶胀建模:非稳态表征

Modeling ionic hydrogels swelling: characterization of the non-steady state.

作者信息

Traitel Tamar, Kost Joseph, Lapidot Smadar A

机构信息

Department of Chemical Engineering, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 84105, Israel.

出版信息

Biotechnol Bioeng. 2003 Oct 5;84(1):20-8. doi: 10.1002/bit.10736.

Abstract

Ionic hydrogels can be used as controlled release systems that respond to an external substrate or trigger by swelling or de-swelling. One example is a glucose-sensitive system for insulin-controlled release based on pH-sensitive hydrogel. To enhance understanding of non-steady state swelling, and to facilitate design of specifications (e.g., glucose-sensitivity) of the pH-sensitive ionic hydrogel based on the copolymer poly (2-hydroxyethyl methacrylate-co-N, N-dimethylaminoethyl methacrylate) (poly (HEMA-co-DMAEMA)), we developed a mathematical compartmental model using the software SAAM II. Current analytical and computational methods focus on equilibrium swelling of hydrogels; although for many stimuli-responsive hydrogel applications, the dynamic process is significant. We now report, using a combination of experimental data and kinetic analysis that in the poly (HEMA-co-DMAEMA) the rate of proton entry is governed by a different rate coefficient than water entry rate. The transport coefficient governing water uptake is dependent upon three variables: pH of external media, amine groups incorporated into the polymer, and crosslinking density of the polymer. An additional result is that swelling equilibrium is reached when all the amine groups are protonated. In this study we also demonstrate the predictive capability of the model for both interpolated and extrapolated data, and its use in design of future bench experiments. Uncovering these fundamental properties of pH-sensitive hydrogels with the aid of a kinetic model suggests that the complexities of hydrogel research and development can be overcome by combining experimental and computational approaches.

摘要

离子水凝胶可作为控释系统,通过溶胀或消溶胀来响应外部底物或触发因素。一个例子是基于pH敏感水凝胶的用于胰岛素控释的葡萄糖敏感系统。为了增进对非稳态溶胀的理解,并便于设计基于共聚物聚(甲基丙烯酸2-羟乙酯-co-N,N-二甲基氨基乙基甲基丙烯酸酯)(聚(HEMA-co-DMAEMA))的pH敏感离子水凝胶的规格(例如葡萄糖敏感性),我们使用SAAM II软件开发了一个数学房室模型。当前的分析和计算方法侧重于水凝胶的平衡溶胀;尽管对于许多刺激响应性水凝胶应用来说,动态过程很重要。我们现在报告,结合实验数据和动力学分析表明,在聚(HEMA-co-DMAEMA)中质子进入的速率由与水进入速率不同的速率系数控制。控制水吸收的传输系数取决于三个变量:外部介质的pH值、聚合物中引入的胺基团以及聚合物的交联密度。另一个结果是当所有胺基团都被质子化时达到溶胀平衡。在本研究中我们还展示了该模型对插值和外推数据的预测能力,以及它在未来实验台实验设计中的应用。借助动力学模型揭示pH敏感水凝胶的这些基本特性表明,通过结合实验和计算方法可以克服水凝胶研发的复杂性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验