Suppr超能文献

高能量需求硬骨鱼——鲣(Katsuwonus pelamis)鳃的血管解剖结构。

Vascular anatomy of the gills in a high energy demand teleost, the skipjack tuna (Katsuwonus pelamis).

作者信息

Olson Kenneth R, Dewar Heidi, Graham Jeffrey B, Brill Richard W

机构信息

Indiana University School of Medicine, South Bend Center for Medical Education, University of Notre Dame, Notre Dame, Indiana 46556, USA.

出版信息

J Exp Zool A Comp Exp Biol. 2003 May 1;297(1):17-31. doi: 10.1002/jez.a.10262.

Abstract

Tunas (family: Scombridae, Tribe: Thunnini) exhibit anatomical, physiological, and biochemical adaptations that dramatically increase the ability of their cardiorespiratory systems to transfer oxygen from the water to the tissues. In the present study the vascular anatomy of the skipjack tuna, Katsuwonus pelamis, gill was examined by light and scanning electron microscopic analysis of methyl methacrylate vascular corrosion replicas prepared under physiological pressure. The gill filament contains three distinct blood pathways, respiratory, interlamellar, and nutrient. The respiratory, or arterio-arterial (AA) pathway, is the site of gas exchange and consists of the afferent and efferent filamental arteries (AFA and EFA) and arterioles (ALA and ELA) and the lamellae. Each ALA in the basal filament supplies ten or more lamellae and they anastomose with their neighbor to form a continuous vascular arcade. Four modifications in the lamellar circulation appear to enhance gas exchange efficiency. 1) The ALA deliver blood directly to the outer margin of the lamellae where unstirred boundary layer effects are predicted to be minimal and water PO2 highest. 2) Pillar cells are closely aligned along the outer boundary of the inlet side and the inner boundary of the outlet side of the lamellae to form multiple distributing and receiving blood channels. 3) Elsewhere in the lamella, pillar cells are aligned to form diagonal channels that direct blood from the outer to the inner lamellar margins, thereby reducing vascular resistance. 4) The lamellar sinusoid is especially widened near the efferent end to augment oxygen saturation of blood flowing through the inner margin. These adaptations, plus the presence of a bow-shaped interlamellar septum, and a thinned filament core appear to decrease gill vascular resistance and maximize gas-exchange efficiency. The interlamellar (IL) and nutrient systems originate from post-lamellar vessels and are arterio-venous (AV) pathways. IL vessels form an extensive ladder-like lattice on both sides of the filamental cartilage and are supplied in part by narrow-bore vessels from the medial wall of the EFA. Their function is unknown. Nutrient vessels are formed from the confluence of a myriad of tortuous, narrow-bore vessels arising from the basal region of the EFA and from efferent branchial arteries. They re-enter the filament and eventually drain into the IL system or filamental veins. As these AV pathways are retained despite considerable reduction in filamental tissue, it is evident that they are integral components of other non-respiratory homeostatic activities of the gill.

摘要

金枪鱼(鲭科,金枪鱼族)展现出解剖学、生理学和生物化学方面的适应性变化,这些变化极大地增强了其心肺系统将水中氧气输送到组织的能力。在本研究中,通过对在生理压力下制备的甲基丙烯酸甲酯血管铸型进行光学和扫描电子显微镜分析,研究了鲣鱼(Katsuwonus pelamis)鳃的血管解剖结构。鳃丝包含三种不同的血液通路,即呼吸通路、片间通路和营养通路。呼吸通路,即动脉 - 动脉(AA)通路,是气体交换的部位,由入鳃丝动脉和出鳃丝动脉(AFA和EFA)、小动脉(ALA和ELA)以及鳃小片组成。基部鳃丝中的每条ALA为十个或更多的鳃小片供血,它们与相邻的血管吻合形成连续的血管弓。鳃小片循环中的四种改变似乎提高了气体交换效率。1)ALA将血液直接输送到鳃小片的外缘,预计此处的非搅拌边界层效应最小且水的PO2最高。2)柱状细胞沿着鳃小片入口侧的外边界和出口侧的内边界紧密排列,形成多个分布和接收血液的通道。3)在鳃小片的其他部位,柱状细胞排列形成对角通道,将血液从鳃小片的外缘引导至内缘,从而降低血管阻力。4)鳃小片血窦在出鳃端附近特别加宽,以增加流经内缘的血液的氧饱和度。这些适应性变化,加上存在弓形的片间隔和变细的鳃丝核心,似乎降低了鳃的血管阻力并使气体交换效率最大化。片间(IL)和营养系统起源于鳃小片后的血管,是动静脉(AV)通路。IL血管在鳃丝软骨两侧形成广泛的梯状网格,部分由来自EFA内侧壁的细孔血管供血。它们的功能尚不清楚。营养血管由源自EFA基部区域和出鳃动脉的无数曲折细孔血管汇合而成。它们重新进入鳃丝,最终排入IL系统或鳃丝静脉。尽管鳃丝组织大量减少,但这些AV通路仍然保留,显然它们是鳃的其他非呼吸性稳态活动的重要组成部分。

相似文献

1
Vascular anatomy of the gills in a high energy demand teleost, the skipjack tuna (Katsuwonus pelamis).
J Exp Zool A Comp Exp Biol. 2003 May 1;297(1):17-31. doi: 10.1002/jez.a.10262.
2
Vascular anatomy of the fish gill.
J Exp Zool. 2002 Aug 1;293(3):214-31. doi: 10.1002/jez.10131.
3
Vascular organization of the catfish gill filament.
Cell Tissue Res. 1979 May 25;198(3):487-500. doi: 10.1007/BF00234193.
8
A study on the blood vascular system of the lamprey gill filament.
Am J Anat. 1978 Feb;151(2):239-63. doi: 10.1002/aja.1001510207.
9
Corrosion cast of the vascularization of Mugil Cephalus gills.
Ital J Anat Embryol. 2000 Apr-Jun;105(2):121-9.

引用本文的文献

1
Ontogenetic changes in cutaneous and branchial ionocytes and morphology in yellowfin tuna (Thunnus albacares) larvae.
J Comp Physiol B. 2019 Feb;189(1):81-95. doi: 10.1007/s00360-018-1187-9. Epub 2018 Oct 24.
2
Intussusceptive angiogenesis: expansion and remodeling of microvascular networks.
Angiogenesis. 2014 Jul;17(3):499-509. doi: 10.1007/s10456-014-9428-3. Epub 2014 Mar 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验