Suppr超能文献

Highly nonexponential kinetics in the early-phase refolding of proteins at low temperatures.

作者信息

Saigo Satoshi, Shibayama Naoya

机构信息

Division of Biophysics, Department of Physiology, Jichi Medical School, Minamikawachi, Tochigi 329-0498, Japan.

出版信息

Biochemistry. 2003 Aug 19;42(32):9669-76. doi: 10.1021/bi034484y.

Abstract

Theory and simulations predict that the folding kinetics of protein-like heteropolymers become nonexponential and glassy (i.e., controlled by escape from different low-energy misfolded states) at low temperatures, but there was little experimental evidence for such behavior of proteins. We have developed a stopped-flow instrument working reliably down to -40 degrees C with high mixing capability and applied it to study the refolding kinetics of horse cytochrome c (cyt c) and hen egg white lysozyme at temperatures below 0 degrees C in the presence of antifreeze NaCl, LiCl, or ethylene glycol and above 0 degrees C in the presence and absence of antifreeze. The refolding was initiated by rapid dilution of the guanidine hydrochloride unfolded proteins, and the kinetics were monitored by intrinsic tryptophan fluorescence. Highly nonexponential kinetics extended over 3 decades in time (0.01-10 s) were observed in the early phases of the refolding of cyt c and lysozyme in the temperature range of -35 to 5 degrees C. These results are in agreement with the theoretical prediction, suggesting that the folding energy landscapes of these proteins are rugged in the upper portions.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验