Suppr超能文献

Involvement of LMA1 and GATE-16 family members in intracellular membrane dynamics.

作者信息

Elazar Zvulun, Scherz-Shouval Ruth, Shorer Hagai

机构信息

Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel.

出版信息

Biochim Biophys Acta. 2003 Aug 18;1641(2-3):145-56. doi: 10.1016/s0167-4889(03)00086-7.

Abstract

Intracellular membrane fusion is conserved from yeast to man as well as among different intracellular trafficking pathways. This process can be generally divided into several well-defined biochemical reactions. First, an early recognition (or tethering) takes place between donor and acceptor membranes, mediated by ypt/rab GTPases and complexes of tethering factors. Subsequently, a closer association between the two membranes is achieved by a docking process, which involves tight association between membrane proteins termed SNAREs. The formation of such a trans-SNARE complex leads to the final membrane fusion, resulting in an accumulation of cis-SNARE complexes on the acceptor membrane. Thus, multiple rounds of transport and delivery of the donor SNARE back to its original membrane require dissociation of the SNARE complexes. SNARE dissociation, termed priming, is mediated by the AAA ATPase, N-ethylmaleimide-sensitive factor (NSF) and its partner, soluble NSF attachment protein (SNAP), in a reaction that requires ATP hydrolysis. In the present review we focus on LMA1 and GATE-16, two low-molecular-weight proteins, which assist in priming SNARE molecules in the vacuole in yeast and the Golgi complex in mammals, respectively. LMA1 and GATE-16 are suggested to keep the dissociated cis-SNAREs apart from each other, allowing multiple fusion processes to take place. GATE-16 belongs to a novel family of ubiquitin-like proteins conserved from yeast to man. We discuss here the involvement of this family in multiple intracellular trafficking pathways.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验