Suppr超能文献

Altered cardiovascular regulation in arginine vasopressin-overexpressing transgenic rat.

作者信息

Tachikawa Kazushige, Yokoi Hisashi, Nagasaki Hiroshi, Arima Hiroshi, Murase Takashi, Sugimura Yoshihisa, Miura Yoshitaka, Hirabayashi Masumi, Oiso Yutaka

机构信息

Department of of Internal Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.

出版信息

Am J Physiol Endocrinol Metab. 2003 Dec;285(6):E1161-6. doi: 10.1152/ajpendo.00570.2002. Epub 2003 Aug 12.

Abstract

Although arginine vasopressin (AVP), an antidiuretic hormone, has been widely acknowledged to play an important role in cardiovascular regulation via V1a receptors (V1aR), its precise significance remains unclear. In this study, we investigated the effects of long-standing high plasma AVP status on cardiovascular regulation in the AVP-overexpressing transgenic (Tg) rat. Adult male homozygous Tg rats were compared with age-matched normal Sprague-Dawley rats as controls. There were no significant differences in mean arterial blood pressure (BP; MABP) or heart rate between Tg and control rats in the basal state. Subcutaneous injection of AVP significantly increased MABP in controls but did not cause any apparent increase in MABP in Tg rats. BP recovery from hemorrhage-induced hypotension was significantly delayed in Tg compared with control rats. Pretreatment with a selective V1aR antagonist, OPC-21268, which is thought to restore the downregulation of V1aR, markedly improved both of these impaired responses. Northern blot analysis confirmed that decreased expression of V1aR mRNA and pretreatment with V1aR antagonist significantly restored the downregulation of V1aR mRNA. These results suggest that the Tg rat has decreased sensitivity to the hypertensive effect of AVP due to downregulation of V1aR, which may function as an adaptive mechanism to maintain normal BP against chronic hypervasopressinemia. In addition, impaired restoration of BP after hemorrhage-induced hypotension in Tg rats supports a physiological role of AVP in cardiovascular regulation.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验