Suppr超能文献

人工神经网络在近红外光谱法鉴定药用大黄中的应用。

The application of an artificial neural network in the identification of medicinal rhubarbs by near-infrared spectroscopy.

作者信息

Xiang Lan, Fan Guoqiang, Li Junhui, Kang Hui, Yan Yanlu, Zheng Junhua, Guo Dean

机构信息

School of Pharmaceutical Science, Peking University, Beijing, People's Republic of China.

出版信息

Phytochem Anal. 2002 Sep-Oct;13(5):272-6. doi: 10.1002/pca.654.

Abstract

This paper describes a method to combine near-infrared spectroscopy and a three layer back-propagation artificial neural network in order to identify official and unofficial rhubarbs. Thirty-three samples were taken as the training set, and 62 samples as the test set. The effects of input node number, learning rate and momentum on the final error and recognition accuracy for the training set, and on prediction accuracy for the test set were determined. A neural network with eight input nodes, a 0.5 learning rate, and a momentum of 0.3 can achieve a recognition accuracy of 100% for the training set and a prediction accuracy of 96.8% for the test set. The method described offers a quick and efficient means of identifying rhubarbs.

摘要

本文描述了一种结合近红外光谱和三层反向传播人工神经网络来鉴别正品和非正品大黄的方法。选取33个样本作为训练集,62个样本作为测试集。确定了输入节点数、学习率和动量对训练集最终误差和识别准确率以及对测试集预测准确率的影响。一个具有8个输入节点、学习率为0.5且动量为0.3的神经网络,对训练集可实现100%的识别准确率,对测试集可实现96.8%的预测准确率。所描述的方法为大黄的鉴别提供了一种快速有效的手段。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验