McDonough Alicia A, Biemesderfer Daniel
Department of Physiology, University of Southern California Keck School of Medicine, Los Angeles, California 90089-9142, USA.
Curr Opin Nephrol Hypertens. 2003 Sep;12(5):533-41. doi: 10.1097/00041552-200309000-00009.
The proximal tubule sodium/hydrogen exchanger continuously reabsorbs the bulk of the filtered sodium, controlling salt delivery to the distal nephron which is critical for tubuloglomerular feedback autoregulation and for fine control of salt excretion in the distal nephron. This review focuses on recent studies of the mechanisms of regulation of sodium transport in the proximal tubule, and addresses whether results from studies in proximal tubule cell lines are applicable to the proximal tubule in situ.
Recent in-vivo studies provided evidence that sodium/hydrogen exchanger isoform 3 can move into and out of the apical microvilli accompanied by parallel changes in renal sodium transport: the exchanger is retracted from the microvilli in response to hypertension, parathyroid hormone or dopamine treatment and moved into the microvilli in response to sympathetic nervous system stimulation, puromycin aminonucleoside induced nephritic syndrome, and insulin treatment. Studies in cultured opossum kidney proximal tubule cells provided evidence for clathrin coated vesicle mediated, dynamin dependent, cytoskeleton dependent internalization of sodium/hydrogen exchanger isoform 3 from the surface to an endosomal pool in response to dopamine or parathyroid hormone. In the intact proximal tubule there is evidence for a two-step internalization process: (1) from villi to the intermicrovillar cleft region and (2) to a higher density membrane pool that may be either below the microvilli or deep in intermicrovillar clefts. Recent studies have described a significant inactive pool of the exchanger in the intermicrovillar region in vivo that may serve as a storage and recruitable pool.
The molecular mechanisms responsible for increasing or decreasing sodium transport in the proximal tubule appear to include redistribution of sodium/hydrogen exchanger isoform 3 to or from the microvillar region. Detailed studies in cultured proximal tubule cell lines provide evidence for endocytosis and exocytosis of the exchanger dependent on cytoskeleton and clathrin coated vesicles. In vivo, the apical membrane is differentiated into discrete villar and intermicrovillar membrane domains and the intermicrovillar domain, not observed in cultured cells, may serve as a recruitable storage pool for sodium/hydrogen exchanger isoform 3.
近端小管钠/氢交换器持续重吸收大部分滤过的钠,控制输送至远端肾单位的盐量,这对于管球反馈自动调节以及远端肾单位盐排泄的精细控制至关重要。本综述聚焦于近端小管钠转运调节机制的近期研究,并探讨近端小管细胞系研究结果是否适用于原位近端小管。
近期的体内研究提供了证据,表明钠/氢交换体3型可伴随肾钠转运的平行变化进出顶端微绒毛:该交换体在高血压、甲状旁腺激素或多巴胺处理时从微绒毛缩回,而在交感神经系统刺激、嘌呤霉素氨基核苷诱导的肾病综合征及胰岛素处理时移入微绒毛。对培养的负鼠肾近端小管细胞的研究提供了证据,表明钠/氢交换体3型在多巴胺或甲状旁腺激素作用下,通过网格蛋白包被小泡介导、发动蛋白依赖性、细胞骨架依赖性的内化作用,从表面进入内体池。在完整的近端小管中,有证据表明存在两步内化过程:(1)从绒毛到微绒毛间裂区域;(2)到一个更高密度的膜池,该膜池可能位于微绒毛下方或微绒毛间裂深处。近期研究描述了体内微绒毛间区域存在大量无活性的交换体池,其可能作为一个储存和可重新利用的池。
近端小管中钠转运增加或减少的分子机制似乎包括钠/氢交换体3型在微绒毛区域的进出再分布。对培养的近端小管细胞系的详细研究提供了依赖于细胞骨架和网格蛋白包被小泡的交换体内吞和外排的证据。在体内,顶端膜分化为离散的绒毛膜和微绒毛间膜结构域,而微绒毛间结构域在培养细胞中未观察到,其可能作为钠/氢交换体3型的可重新利用的储存池。