Suppr超能文献

鼠疫耶尔森菌噬菌体phiA1122的基因组序列揭示了其与大肠杆菌噬菌体T3和T7基因组密切的演化历史。

The genome sequence of Yersinia pestis bacteriophage phiA1122 reveals an intimate history with the coliphage T3 and T7 genomes.

作者信息

Garcia Emilio, Elliott Jeffrey M, Ramanculov Erlan, Chain Patrick S G, Chu May C, Molineux Ian J

机构信息

Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, Livermore, CA, USA.

出版信息

J Bacteriol. 2003 Sep;185(17):5248-62. doi: 10.1128/JB.185.17.5248-5262.2003.

Abstract

The genome sequence of bacteriophage phiA1122 has been determined. phiA1122 grows on almost all isolates of Yersinia pestis and is used by the Centers for Disease Control and Prevention as a diagnostic agent for the causative agent of plague. phiA1122 is very closely related to coliphage T7; the two genomes are colinear, and the genome-wide level of nucleotide identity is about 89%. However, a quarter of the phiA1122 genome, one that includes about half of the morphogenetic and maturation functions, is significantly more closely related to coliphage T3 than to T7. It is proposed that the yersiniophage phiA1122 recombined with a close relative of the Y. enterocolitica phage phiYeO3-12 to yield progeny phages, one of which became the classic T3 coliphage of Demerec and Fano (M. Demerec and U. Fano, Genetics 30:119-136, 1945).

摘要

噬菌体phiA1122的基因组序列已被测定。phiA1122能在几乎所有鼠疫耶尔森菌分离株上生长,美国疾病控制与预防中心将其用作鼠疫病原体的诊断试剂。phiA1122与大肠杆菌噬菌体T7密切相关;这两个基因组是共线的,全基因组核苷酸同一性水平约为89%。然而,phiA1122基因组的四分之一,即包含约一半形态发生和成熟功能的部分,与大肠杆菌噬菌体T3的亲缘关系明显比与T7的更近。有人提出,鼠疫噬菌体phiA1122与小肠结肠炎耶尔森菌噬菌体phiYeO3 - 12的一个近亲发生重组,产生了子代噬菌体,其中一个子代噬菌体成为了Demerec和Fano经典的大肠杆菌噬菌体T3(M. Demerec和U. Fano,《遗传学》30:119 - 136,1945年)。

相似文献

2
Complete nucleotide sequence and likely recombinatorial origin of bacteriophage T3.
J Mol Biol. 2002 Jun 21;319(5):1115-32. doi: 10.1016/S0022-2836(02)00384-4.
4
Bacteriophage phiYeO3-12, specific for Yersinia enterocolitica serotype O:3, is related to coliphages T3 and T7.
J Bacteriol. 2000 Sep;182(18):5114-20. doi: 10.1128/JB.182.18.5114-5120.2000.
5
Complete genomic sequence of the lytic bacteriophage phiYeO3-12 of Yersinia enterocolitica serotype O:3.
J Bacteriol. 2001 Mar;183(6):1928-37. doi: 10.1128/JB.183.6.1928-1937.2001.
7
The complete genome sequence and proteomics of Yersinia pestis phage Yep-phi.
J Gen Virol. 2011 Jan;92(Pt 1):216-21. doi: 10.1099/vir.0.026328-0. Epub 2010 Oct 13.
8
Compensatory evolution in response to a novel RNA polymerase: orthologous replacement of a central network gene.
Mol Biol Evol. 2007 Apr;24(4):900-8. doi: 10.1093/molbev/msm006. Epub 2007 Jan 13.
10
Simple sequence repeat variations expedite phage divergence: Mechanisms of indels and gene mutations.
Mutat Res. 2016 Jul;789:48-56. doi: 10.1016/j.mrfmmm.2016.04.001. Epub 2016 Apr 14.

引用本文的文献

1
Reuse, Repurpose, and Recycle: Bacteriophages and Microbial Surveillance (1921-2023).
Phage (New Rochelle). 2024 Mar 18;5(1):14-21. doi: 10.1089/phage.2023.0042. eCollection 2024 Mar.
2
Cell-free expression system: a promising platform for bacteriophage production and engineering.
Microb Cell Fact. 2025 Feb 17;24(1):42. doi: 10.1186/s12934-025-02661-9.
3
Symbiosis of a lytic bacteriophage and and characteristics of plague in .
Appl Environ Microbiol. 2024 Aug 21;90(8):e0099524. doi: 10.1128/aem.00995-24. Epub 2024 Jul 18.
5
Temperature-dependent carrier state mediated by H-NS promotes the long-term coexistence of Y. pestis and a phage in soil.
PLoS Pathog. 2023 Jun 22;19(6):e1011470. doi: 10.1371/journal.ppat.1011470. eCollection 2023 Jun.
6
Phage engineering and phage-assisted CRISPR-Cas delivery to combat multidrug-resistant pathogens.
Bioeng Transl Med. 2022 Aug 6;8(2):e10381. doi: 10.1002/btm2.10381. eCollection 2023 Mar.
7
Design of a Bacteriophage Cocktail Active against Species and Testing of Its Therapeutic Potential in .
Antibiotics (Basel). 2022 Nov 19;11(11):1659. doi: 10.3390/antibiotics11111659.
8
Pseudotyping Bacteriophage P2 Tail Fibers to Extend the Host Range for Biomedical Applications.
ACS Synth Biol. 2022 Oct 21;11(10):3207-3215. doi: 10.1021/acssynbio.1c00629. Epub 2022 Sep 9.
9
Functional comparison of anti-restriction and anti-methylation activities of ArdA, KlcA, and KlcA from .
Front Cell Infect Microbiol. 2022 Jul 28;12:916547. doi: 10.3389/fcimb.2022.916547. eCollection 2022.
10
Properties of Two Broad Host Range Phages of Isolated from Wild Animals.
Int J Mol Sci. 2021 Oct 21;22(21):11381. doi: 10.3390/ijms222111381.

本文引用的文献

3
Bacteriophage-Resistant Mutants in Escherichia Coli.
Genetics. 1945 Mar;30(2):119-36. doi: 10.1093/genetics/30.2.119.
4
Pasteurella Bacteriophage Sex Specific in Escherichia coli.
J Virol. 1969 Dec;4(6):896-900. doi: 10.1128/JVI.4.6.896-900.1969.
8
Genome sequence of Yersinia pestis KIM.
J Bacteriol. 2002 Aug;184(16):4601-11. doi: 10.1128/JB.184.16.4601-4611.2002.
9
Complete nucleotide sequence and likely recombinatorial origin of bacteriophage T3.
J Mol Biol. 2002 Jun 21;319(5):1115-32. doi: 10.1016/S0022-2836(02)00384-4.
10
Genome sequence of Yersinia pestis, the causative agent of plague.
Nature. 2001 Oct 4;413(6855):523-7. doi: 10.1038/35097083.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验