Scott J E
Deptartment of Chemical Morphology, Manchester University Medical School, Manchester M13 9PT, UK.
J Physiol. 2003 Dec 1;553(Pt 2):335-43. doi: 10.1113/jphysiol.2003.050179. Epub 2003 Aug 15.
Connective tissues (CTs), which define bodily shape, must respond quickly, robustly and reversibly to deformations caused by internal and external stresses. Fibrillar (elastin, collagen) elasticity under tension depends on molecular and supramolecular mechanisms. A second intra-/inter-molecular pair, involving proteoglycans (PGs), is proposed to cope with compressive stresses. PG interfibrillar bridges ('shape modules'), supramolecular structures ubiquitously distributed throughout CT extracellular matrices (ECMs), are examined for potential elastic properties. L-iduronate residues in shape module decoran PGs are suggested to be molecular springs, cycling through alternative conformations. On a larger scale, anionic glycosaminoglycan (AGAG) interfibrillar bridges in shape modules are postulated to take part in a sliding filament (dashpot-like) process, which converts local compressions into disseminated tensile strains. The elasticity of fibrils and AGAGs, manifest at molecular and larger-scale levels, provides a graduated and smooth response to stresses of varying degrees. NMR and rheo NMR, computer modelling, electron histochemical, biophysical and chemical morphological evidence for the proposals is reviewed.
结缔组织(CTs)决定身体形状,必须对由内部和外部应力引起的变形做出快速、强烈且可逆的反应。张力下的纤维状(弹性蛋白、胶原蛋白)弹性取决于分子和超分子机制。有人提出涉及蛋白聚糖(PGs)的第二组分子内/分子间对来应对压缩应力。研究了PG纤维间桥(“形状模块”),这是普遍分布于CT细胞外基质(ECMs)中的超分子结构,以探究其潜在的弹性特性。形状模块核心蛋白聚糖PGs中的L-艾杜糖醛酸残基被认为是分子弹簧,通过交替构象循环。在更大尺度上,形状模块中的阴离子糖胺聚糖(AGAG)纤维间桥被假定参与滑动丝(类似缓冲器)过程,该过程将局部压缩转化为分散的拉伸应变。纤维和AGAG的弹性在分子和更大尺度水平上表现出来,为不同程度的应力提供了分级且平滑的反应。本文综述了支持这些提议的核磁共振和流变核磁共振、计算机建模、电子组织化学、生物物理和化学形态学证据。