Suppr超能文献

使用时间参数化自组织映射对机器人轨迹进行建模与生成

Modeling and production of robot trajectories using the Temporal Parametrized Self Organizing Maps.

作者信息

Padoan Junior Antonio Carlos, De A Barreto Guilherme, Araújo Aluizio F R

机构信息

Departamento de Engenharia Elétrica, Universidade de São Paulo, Av. Trabalhador Sancarlense, 400, São Carlos, São Paulo, CEP 13566-590, Brasil.

出版信息

Int J Neural Syst. 2003 Apr;13(2):119-27. doi: 10.1142/S0129065703001510.

Abstract

In this paper we proposed an unsupervised neural architecture, called Temporal Parametrized Self Organizing Map (TEPSOM), capable of learning and reproducing complex robot trajectories and interpolating new states between the learned ones. The TEPSOM combines the Self-Organizing NARX (SONARX) network, responsible for coding the temporal associations of the robotic trajectory, with the Parametrized Self-Organizing (PSOM) network, responsible for an efficient interpolation mechanism acting on the SONARX neurons. The TEPSOM network is used to model the inverse kinematics of the PUMA 560 robot during the execution of trajectories with repeated states. Simulation results show that the TEPSOM is more accurate than the SONARX in the reproduction of the learned trajectories.

摘要

在本文中,我们提出了一种无监督神经架构,称为时间参数化自组织映射(TEPSOM),它能够学习和再现复杂的机器人轨迹,并在所学轨迹之间插入新状态。TEPSOM将负责编码机器人轨迹时间关联的自组织NARX(SONARX)网络与负责对SONARX神经元进行有效插值机制的参数化自组织(PSOM)网络相结合。TEPSOM网络用于在执行具有重复状态的轨迹期间对PUMA 560机器人的逆运动学进行建模。仿真结果表明,在再现所学轨迹方面,TEPSOM比SONARX更准确。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验