Suppr超能文献

一种用于在线无监督学习的增强型自组织增量神经网络。

An enhanced self-organizing incremental neural network for online unsupervised learning.

作者信息

Furao Shen, Ogura Tomotaka, Hasegawa Osamu

机构信息

The State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, PR China.

出版信息

Neural Netw. 2007 Oct;20(8):893-903. doi: 10.1016/j.neunet.2007.07.008. Epub 2007 Aug 14.

Abstract

An enhanced self-organizing incremental neural network (ESOINN) is proposed to accomplish online unsupervised learning tasks. It improves the self-organizing incremental neural network (SOINN) [Shen, F., Hasegawa, O. (2006a). An incremental network for on-line unsupervised classification and topology learning. Neural Networks, 19, 90-106] in the following respects: (1) it adopts a single-layer network to take the place of the two-layer network structure of SOINN; (2) it separates clusters with high-density overlap; (3) it uses fewer parameters than SOINN; and (4) it is more stable than SOINN. The experiments for both the artificial dataset and the real-world dataset also show that ESOINN works better than SOINN.

摘要

提出了一种增强型自组织增量神经网络(ESOINN)来完成在线无监督学习任务。它在以下方面改进了自组织增量神经网络(SOINN)[Shen, F., Hasegawa, O. (2006a). An incremental network for on-line unsupervised classification and topology learning. Neural Networks, 19, 90 - 106]:(1)采用单层网络代替SOINN的双层网络结构;(2)分离高密度重叠的聚类;(3)使用比SOINN更少的参数;(4)比SOINN更稳定。人工数据集和真实世界数据集的实验也表明ESOINN比SOINN表现更好。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验