Suppr超能文献

用于预测经皮吸收率的定量构效关系

Quantitative structure-activity relationships for predicting percutaneous absorption rates.

作者信息

Walker John D, Rodford Rosemary, Patlewicz Grace

机构信息

TSCA Interagency Testing Committee, Office of Pollution Prevention and Toxics (7401), U.S. Environmental Protection Agency, 1200 Pennsylvania Avenue, Northwest, Washington, DC 20460, USA.

出版信息

Environ Toxicol Chem. 2003 Aug;22(8):1870-84. doi: 10.1897/01-454.

Abstract

Quantitative structure-activity relationships (QSARs) for predicting percutaneous absorption rates were reviewed. Overall progress has been hampered by the sparseness of good quality experimental data. A number of researchers have used the same data set to develop QSARs for predicting percutaneous absorption rates, a fact that makes it difficult, at this time, to recommend one or two QSARs for predicting percutaneous absorption rates. Identification of chemicals within domains of large chemical universes that should be tested to improve QSARs and the subsequent development of experimental percutaneous absorption rates for those chemicals will facilitate the development of more robust QSARs for predicting percutaneous absorption rates.

摘要

对用于预测经皮吸收率的定量构效关系(QSARs)进行了综述。高质量实验数据的稀缺阻碍了整体进展。许多研究人员使用相同的数据集来开发用于预测经皮吸收率的QSARs,这一事实使得目前难以推荐一两种用于预测经皮吸收率的QSARs。识别大型化学库范围内应进行测试以改进QSARs的化学物质,并随后测定这些化学物质的实验经皮吸收率,将有助于开发出更可靠的用于预测经皮吸收率的QSARs。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验