Farrington C P, Kanaan M N, Gay N J
Department of Statistics, The Open University, Milton Keynes, MK7 6AA, UK.
Biostatistics. 2003 Apr;4(2):279-95. doi: 10.1093/biostatistics/4.2.279.
Mass vaccination programmes aim to maintain the effective reproduction number R of an infection below unity. We describe methods for monitoring the value of R using surveillance data. The models are based on branching processes in which R is identified with the offspring mean. We derive unconditional likelihoods for the offspring mean using data on outbreak size and outbreak duration. We also discuss Bayesian methods, implemented by Metropolis-Hastings sampling. We investigate by simulation the validity of the models with respect to depletion of susceptibles and under-ascertainment of cases. The methods are illustrated using surveillance data on measles in the USA.
大规模疫苗接种计划旨在将感染的有效繁殖数R维持在1以下。我们描述了使用监测数据监测R值的方法。这些模型基于分支过程,其中R与后代均值等同。我们利用疫情规模和疫情持续时间的数据推导出后代均值的无条件似然性。我们还讨论了通过Metropolis-Hastings抽样实现的贝叶斯方法。我们通过模拟研究了模型在易感人群耗尽和病例报告不足方面的有效性。使用美国麻疹监测数据对这些方法进行了说明。