Suppr超能文献

超声引导下乳腺细针穿刺细胞学检查的价值:354例细胞组织学相关性分析

The value of ultrasound-guided fine-needle aspiration cytology of the breast: 354 cases with cytohistological correlation.

作者信息

Kamphausen Bettina H, Toellner Thilo, Ruschenburg Ilka

机构信息

Department of Cytopathology, Georg-August-University, Robert-Koch-Str. 40, D-37075 Goettingen, Germany.

出版信息

Anticancer Res. 2003 May-Jun;23(3C):3009-13.

Abstract

BACKGROUND

Fine-needle aspiration cytology has a high rating in the assessment of breast lesions in many countries. We want to present the results of close cooperation between experienced radiologists and cytopathologists in the diagnosis of breast lesions.

MATERIALS AND METHODS

Fine-needle aspiration cytology (FNAC) from 354 breast lesions assessed under ultrasound guidance were analysed retrospectively. Results from histological and clinical follow-up were compared to cytological results.

RESULTS

Sensitivity, specificity, positive and negative predictive value, false-positive and false-negative fraction of FNAC were 90%, 100%, 100%, 90.0%, 0% and 4.63%, respectively. In comparison to other tests, FNAC proved to be a valuable tool to diagnose breast lesions. The "triple test", based on the combination of clinical, imaging and cytological findings, demonstrated increased sensitivity compared to single tests.

CONCLUSION

Summarizing, FNAC is a valuable tool for the diagnosis of breast lesions, especially as a part of the triple test. The method is inexpensive, not invasive and can provide a definitive and correct diagnosis for the majority of breast lesions.

摘要

背景

在许多国家,细针穿刺细胞学检查在乳腺病变评估中具有很高的评级。我们希望展示经验丰富的放射科医生和细胞病理学家在乳腺病变诊断方面密切合作的成果。

材料与方法

回顾性分析了在超声引导下对354例乳腺病变进行的细针穿刺细胞学检查(FNAC)结果。将组织学和临床随访结果与细胞学结果进行比较。

结果

FNAC的敏感性、特异性、阳性和阴性预测值、假阳性和假阴性率分别为90%、100%、100%、90.0%、0%和4.63%。与其他检查相比,FNAC被证明是诊断乳腺病变的一种有价值的工具。基于临床、影像学和细胞学检查结果相结合的“三联检查”,与单项检查相比,敏感性有所提高。

结论

总之,FNAC是诊断乳腺病变的一种有价值的工具,尤其是作为三联检查的一部分。该方法价格低廉、非侵入性,可为大多数乳腺病变提供明确且正确的诊断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验