Polgár János, Lane William S, Chung Sul-Hee, Houng Aiilyan K, Reed Guy L
Cardiovascular Biology Laboratory, Harvard School of Public Health, Boston, Massachusetts 02115, USA.
J Biol Chem. 2003 Nov 7;278(45):44369-76. doi: 10.1074/jbc.M307864200. Epub 2003 Aug 20.
Phosphorylation of SNARE proteins may provide a critical link between cell activation and secretory processes. Platelets contain all three members of the SNAP-23/25/29 gene family, but by comparison to brain tissue, SNAP-23 is the most highly enriched of these proteins in platelets. SNAP-23 function is required for exocytosis from platelet alpha, dense, and lysosomal granules. SNAP-23 was phosphorylated largely on serine residues in platelets activated with thrombin. Phosphorylation kinetics paralleled or preceded granule secretion. Inhibition studies suggested that SNAP-23 phosphorylation proceeds largely through a protein kinase C (PKC) mechanism and purified PKC directly phosphorylated recombinant (r-) SNAP-23 (up to 0.3 mol of phosphate/mol of protein). Five major tryptic phosphopeptides were identified in cellular SNAP-23 isolated from activated platelets; three phosphopeptides co-migrated with those identified in PKC-phosphorylated r-SNAP-23. In contrast, only one major phosphopeptide was identified when SNAP-23, engaged in a ternary SNARE complex, was phosphorylated by PKC. Ion trap mass spectrometry revealed that platelet SNAP-23 was phosphorylated at Ser23/Thr24 and Ser161, after cell activation by thrombin; these sites were also identified in PKC-phosphorylated r-SNAP-23. SNAP-23 mutants that mimic phosphorylation at Ser23/Thr24 inhibited syntaxin 4 interactions, whereas a phosphorylation mutant of Ser161 had only minor effects. Taken together these studies show that SNAP-23 is phosphorylated in platelets during cell activation through a PKC-related mechanism at two or more sites with kinetics that parallel or precede granule secretion. Because mutants that mimic SNAP-23 phosphorylation affect syntaxin 4 interactions, we hypothesize that SNAP-23 phosphorylation may be important for modulating SNARE-complex interactions during membrane trafficking and fusion.
SNARE蛋白的磷酸化可能在细胞激活与分泌过程之间提供关键联系。血小板含有SNAP - 23/25/29基因家族的所有三个成员,但与脑组织相比,SNAP - 23是血小板中这些蛋白里富集程度最高的。血小板α颗粒、致密颗粒和溶酶体颗粒的胞吐作用需要SNAP - 23发挥功能。在用凝血酶激活的血小板中,SNAP - 23主要在丝氨酸残基上发生磷酸化。磷酸化动力学与颗粒分泌同步或先于颗粒分泌。抑制研究表明,SNAP - 23磷酸化主要通过蛋白激酶C(PKC)机制进行,纯化的PKC可直接使重组(r -)SNAP - 23磷酸化(每摩尔蛋白最多0.3摩尔磷酸盐)。从活化血小板中分离出的细胞内SNAP - 23中鉴定出了五个主要的胰蛋白酶磷酸肽;其中三个磷酸肽与PKC磷酸化的r - SNAP - 23中鉴定出的磷酸肽迁移情况相同。相比之下,当处于三元SNARE复合体中的SNAP - 被PKC磷酸化时,仅鉴定出一个主要的磷酸肽。离子阱质谱分析显示,在凝血酶激活细胞后,血小板SNAP - 23在Ser23/Thr24和Ser161位点发生磷酸化;这些位点在PKC磷酸化的r - SNAP - 23中也被鉴定出来。模拟Ser23/Thr24位点磷酸化的SNAP - 23突变体抑制了 syntaxin 4的相互作用,而Ser161的磷酸化突变体只有轻微影响。综上所述,这些研究表明,在细胞激活过程中,血小板中的SNAP - 23通过与PKC相关的机制在两个或更多位点发生磷酸化,其动力学与颗粒分泌同步或先于颗粒分泌。由于模拟SNAP - 23磷酸化的突变体影响syntaxin 4的相互作用,我们推测SNAP - 23磷酸化对于在膜运输和融合过程中调节SNARE复合体相互作用可能很重要。