Kajander Tommi, Lehtiö Lari, Schlömann Michael, Goldman Adrian
Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, FIN-00014 Helsinki, Finland.
Protein Sci. 2003 Sep;12(9):1855-64. doi: 10.1110/ps.0388503.
Bacterial muconate lactonizing enzymes (MLEs) catalyze the conversion of cis,cis-muconate as a part of the beta-ketoadipate pathway, and some MLEs are also able to dehalogenate chlorinated muconates (Cl-MLEs). The basis for the Cl-MLEs dehalogenating activity is still unclear. To further elucidate the differences between MLEs and Cl-MLEs, we have solved the structure of Pseudomonas P51 Cl-MLE at 1.95 A resolution. Comparison of Pseudomonas MLE and Cl-MLE structures reveals the presence of a large cavity in the Cl-MLEs. The cavity may be related to conformational changes on substrate binding in Cl-MLEs, at Gly52. Site-directed mutagenesis on Pseudomonas MLE core positions to the equivalent Cl-MLE residues showed that the variant Thr52Gly was rather inactive, whereas the Thr52Gly-Phe103Ser variant had regained part of the activity. These residues form a hydrogen bond in the Cl-MLEs. The Cl-MLE structure, as a result of the Thr-to-Gly change, is more flexible than MLE: As a mobile loop closes over the active site, a conformational change at Gly52 is observed in Cl-MLEs. The loose packing and structural motions in Cl-MLE may be required for the rotation of the lactone ring in the active site necessary for the dehalogenating activity of Cl-MLEs. Furthermore, we also suggest that differences in the active site mobile loop sequence between MLEs and Cl-MLEs result in lower active site polarity in Cl-MLEs, possibly affecting catalysis. These changes could result in slower product release from Cl-MLEs and make it a better enzyme for dehalogenation of substrate.
细菌粘康酸内酯化酶(MLEs)催化顺,顺-粘康酸的转化,这是β-酮己二酸途径的一部分,并且一些MLEs还能够使氯化粘康酸脱卤(Cl-MLEs)。Cl-MLEs脱卤活性的基础仍不清楚。为了进一步阐明MLEs和Cl-MLEs之间的差异,我们以1.95埃的分辨率解析了假单胞菌P51 Cl-MLE的结构。假单胞菌MLE和Cl-MLE结构的比较揭示了Cl-MLEs中存在一个大的空腔。该空腔可能与Cl-MLEs中底物结合时Gly52处的构象变化有关。将假单胞菌MLE核心位置定点突变为等效的Cl-MLE残基表明,变体Thr52Gly相当无活性,而Thr52Gly-Phe103Ser变体恢复了部分活性。这些残基在Cl-MLEs中形成氢键。由于苏氨酸到甘氨酸的变化,Cl-MLE的结构比MLE更灵活:当一个移动环在活性位点上方闭合时,在Cl-MLEs中观察到Gly52处的构象变化。Cl-MLE中松散的堆积和结构运动可能是Cl-MLEs脱卤活性所需的活性位点内酯环旋转所必需的。此外,我们还认为,MLEs和Cl-MLEs之间活性位点移动环序列的差异导致Cl-MLEs中活性位点极性较低,可能影响催化作用。这些变化可能导致Cl-MLEs中产物释放较慢,使其成为底物脱卤的更好酶。