Suppr超能文献

铜绿假单胞菌P51氯代粘康酸内酯化酶的结构:结构与动力学与脱卤功能的协同进化

The structure of Pseudomonas P51 Cl-muconate lactonizing enzyme: co-evolution of structure and dynamics with the dehalogenation function.

作者信息

Kajander Tommi, Lehtiö Lari, Schlömann Michael, Goldman Adrian

机构信息

Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, FIN-00014 Helsinki, Finland.

出版信息

Protein Sci. 2003 Sep;12(9):1855-64. doi: 10.1110/ps.0388503.

Abstract

Bacterial muconate lactonizing enzymes (MLEs) catalyze the conversion of cis,cis-muconate as a part of the beta-ketoadipate pathway, and some MLEs are also able to dehalogenate chlorinated muconates (Cl-MLEs). The basis for the Cl-MLEs dehalogenating activity is still unclear. To further elucidate the differences between MLEs and Cl-MLEs, we have solved the structure of Pseudomonas P51 Cl-MLE at 1.95 A resolution. Comparison of Pseudomonas MLE and Cl-MLE structures reveals the presence of a large cavity in the Cl-MLEs. The cavity may be related to conformational changes on substrate binding in Cl-MLEs, at Gly52. Site-directed mutagenesis on Pseudomonas MLE core positions to the equivalent Cl-MLE residues showed that the variant Thr52Gly was rather inactive, whereas the Thr52Gly-Phe103Ser variant had regained part of the activity. These residues form a hydrogen bond in the Cl-MLEs. The Cl-MLE structure, as a result of the Thr-to-Gly change, is more flexible than MLE: As a mobile loop closes over the active site, a conformational change at Gly52 is observed in Cl-MLEs. The loose packing and structural motions in Cl-MLE may be required for the rotation of the lactone ring in the active site necessary for the dehalogenating activity of Cl-MLEs. Furthermore, we also suggest that differences in the active site mobile loop sequence between MLEs and Cl-MLEs result in lower active site polarity in Cl-MLEs, possibly affecting catalysis. These changes could result in slower product release from Cl-MLEs and make it a better enzyme for dehalogenation of substrate.

摘要

细菌粘康酸内酯化酶(MLEs)催化顺,顺-粘康酸的转化,这是β-酮己二酸途径的一部分,并且一些MLEs还能够使氯化粘康酸脱卤(Cl-MLEs)。Cl-MLEs脱卤活性的基础仍不清楚。为了进一步阐明MLEs和Cl-MLEs之间的差异,我们以1.95埃的分辨率解析了假单胞菌P51 Cl-MLE的结构。假单胞菌MLE和Cl-MLE结构的比较揭示了Cl-MLEs中存在一个大的空腔。该空腔可能与Cl-MLEs中底物结合时Gly52处的构象变化有关。将假单胞菌MLE核心位置定点突变为等效的Cl-MLE残基表明,变体Thr52Gly相当无活性,而Thr52Gly-Phe103Ser变体恢复了部分活性。这些残基在Cl-MLEs中形成氢键。由于苏氨酸到甘氨酸的变化,Cl-MLE的结构比MLE更灵活:当一个移动环在活性位点上方闭合时,在Cl-MLEs中观察到Gly52处的构象变化。Cl-MLE中松散的堆积和结构运动可能是Cl-MLEs脱卤活性所需的活性位点内酯环旋转所必需的。此外,我们还认为,MLEs和Cl-MLEs之间活性位点移动环序列的差异导致Cl-MLEs中活性位点极性较低,可能影响催化作用。这些变化可能导致Cl-MLEs中产物释放较慢,使其成为底物脱卤的更好酶。

相似文献

引用本文的文献

本文引用的文献

2
Raster3D: photorealistic molecular graphics.Raster3D:逼真的分子图形。
Methods Enzymol. 1997;277:505-24. doi: 10.1016/s0076-6879(97)77028-9.
3
A re-evaluation of the crystal structure of chloromuconate cycloisomerase.氯代粘康酸环异构酶晶体结构的重新评估。
Acta Crystallogr D Biol Crystallogr. 1996 Jul 1;52(Pt 4):858-63. doi: 10.1107/S0907444995008936.
8
Buried charged surface in proteins.
Structure. 2000 Nov 15;8(11):1203-14. doi: 10.1016/s0969-2126(00)00520-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验