Singh Shaneen M, Murray Diana
Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021, USA.
Protein Sci. 2003 Sep;12(9):1934-53. doi: 10.1110/ps.0358803.
Phospholipases C (PLCs) reversibly associate with membranes to hydrolyze phosphatidylinositol-4, 5-bisphosphate (PI[4,5]P(2)) and comprise four main classes: beta, gamma, delta, and epsilon. Most eukaryotic PLCs contain a single, N-terminal pleckstrin homology (PH) domain, which is thought to play an important role in membrane targeting. The structure of a single PLC PH domain, that from PLCdelta1, has been determined; this PH domain binds PI(4,5)P(2) with high affinity and stereospecificity and has served as a paradigm for PH domain functionality. However, experimental studies demonstrate that PH domains from different PLC classes exhibit diverse modes of membrane interaction, reflecting the dissimilarity in their amino acid sequences. To elucidate the structural basis for their differential membrane-binding specificities, we modeled the three-dimensional structures of all mammalian PLC PH domains by using bioinformatic tools and calculated their biophysical properties by using continuum electrostatic approaches. Our computational analysis accounts for a large body of experimental data, provides predictions for those PH domains with unknown functions, and indicates functional roles for regions other than the canonical lipid-binding site identified in the PLCdelta1-PH structure. In particular, our calculations predict that (1). members from each of the four PLC classes exhibit strikingly different electrostatic profiles than those ordinarily observed for PH domains in general, (2). nonspecific electrostatic interactions contribute to the membrane localization of PLCdelta-, PLCgamma-, and PLCbeta-PH domains, and (3). phosphorylation regulates the interaction of PLCbeta-PH with its effectors through electrostatic repulsion. Our molecular models for PH domains from all of the PLC classes clearly demonstrate how a common structural fold can serve as a scaffold for a wide range of surface features and biophysical properties that support distinctive functional roles.
磷脂酶C(PLCs)可逆地与膜结合,以水解磷脂酰肌醇-4,5-二磷酸(PI[4,5]P₂),它主要包括四类:β、γ、δ和ε。大多数真核PLCs含有一个单一的N端普列克底物蛋白同源(PH)结构域,该结构域被认为在膜靶向中起重要作用。已确定了来自PLCδ1的单个PLC PH结构域的结构;该PH结构域以高亲和力和立体特异性结合PI(4,5)P₂,并已成为PH结构域功能的范例。然而,实验研究表明,来自不同PLC类别的PH结构域表现出不同的膜相互作用模式,这反映了它们氨基酸序列的差异。为了阐明它们不同的膜结合特异性的结构基础,我们使用生物信息学工具对所有哺乳动物PLC PH结构域的三维结构进行建模,并使用连续静电方法计算它们的生物物理性质。我们的计算分析解释了大量实验数据,为那些功能未知的PH结构域提供了预测,并指出了PLCδ1-PH结构中确定的典型脂质结合位点以外区域的功能作用。特别是,我们的计算预测:(1). 四个PLC类别中的每一类成员都表现出与一般PH结构域通常观察到的显著不同的静电分布;(2). 非特异性静电相互作用有助于PLCδ-、PLCγ-和PLCβ-PH结构域的膜定位;(3). 磷酸化通过静电排斥调节PLCβ-PH与其效应器的相互作用。我们针对所有PLC类别的PH结构域的分子模型清楚地表明,一个共同的结构折叠如何能够作为一个支架,支持广泛的表面特征和生物物理性质,从而发挥独特的功能作用。