Suppr超能文献

单神经元放电率时间演变的统计分析。

Statistical analysis of temporal evolution in single-neuron firing rates.

作者信息

Ventura Valérie, Carta Roberto, Kass Robert E, Gettner Sonya N, Olson Carl R

机构信息

Department of Statistics, Carnegie Mellon University, Baker Hall 132, Pittsburgh PA 15213, USA.

出版信息

Biostatistics. 2002 Mar;3(1):1-20. doi: 10.1093/biostatistics/3.1.1.

Abstract

A fundamental methodology in neurophysiology involves recording the electrical signals associated with individual neurons within brains of awake behaving animals. Traditional statistical analyses have relied mainly on mean firing rates over some epoch (often several hundred milliseconds) that are compared across experimental conditions by analysis of variance. Often, however, the time course of the neuronal firing patterns is of interest, and a more refined procedure can produce substantial additional information. In this paper we compare neuronal firing in the supplementary eye field of a macaque monkey across two experimental conditions. We take the electrical discharges, or 'spikes', to be arrivals in a inhomogeneous Poisson process and then model the firing intensity function using both a simple parametric form and more flexible splines. Our main interest is in making inferences about certain characteristics of the intensity, including the timing of the maximal firing rate. We examine data from 84 neurons individually and also combine results into a hierarchical model. We use Bayesian estimation methods and frequentist significance tests based on a nonparametric bootstrap procedure. We are thereby able to conclude that a substantial fraction of the neurons exhibit important temporal differences in firing intensity across the two conditions, and we quantify the effect across the population of neurons.

摘要

神经生理学中的一种基本方法是记录与清醒行为动物大脑中单个神经元相关的电信号。传统的统计分析主要依赖于某个时间段(通常为几百毫秒)内的平均放电率,通过方差分析在不同实验条件下进行比较。然而,神经元放电模式的时间进程往往是研究的重点,更精细的程序可以产生大量额外信息。在本文中,我们比较了猕猴辅助眼区在两种实验条件下的神经元放电情况。我们将电脉冲,即“尖峰”,视为非齐次泊松过程中的到达事件,然后使用简单的参数形式和更灵活的样条函数对放电强度函数进行建模。我们主要关注的是对强度的某些特征进行推断,包括最大放电率的时间。我们分别检查了来自84个神经元的数据,并将结果合并到一个层次模型中。我们使用贝叶斯估计方法和基于非参数自助法的频率显著性检验。由此我们能够得出结论,相当一部分神经元在两种条件下的放电强度表现出重要的时间差异,并且我们对整个神经元群体的这种效应进行了量化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验