CNRS, LJAD, UMR 7351, Université Nice Sophia Antipolis, 06100, Nice, France.
J Math Neurosci. 2014 Apr 17;4(1):3. doi: 10.1186/2190-8567-4-3.
When dealing with classical spike train analysis, the practitioner often performs goodness-of-fit tests to test whether the observed process is a Poisson process, for instance, or if it obeys another type of probabilistic model (Yana et al. in Biophys. J. 46(3):323-330, 1984; Brown et al. in Neural Comput. 14(2):325-346, 2002; Pouzat and Chaffiol in Technical report, http://arxiv.org/abs/arXiv:0909.2785, 2009). In doing so, there is a fundamental plug-in step, where the parameters of the supposed underlying model are estimated. The aim of this article is to show that plug-in has sometimes very undesirable effects. We propose a new method based on subsampling to deal with those plug-in issues in the case of the Kolmogorov-Smirnov test of uniformity. The method relies on the plug-in of good estimates of the underlying model that have to be consistent with a controlled rate of convergence. Some nonparametric estimates satisfying those constraints in the Poisson or in the Hawkes framework are highlighted. Moreover, they share adaptive properties that are useful from a practical point of view. We show the performance of those methods on simulated data. We also provide a complete analysis with these tools on single unit activity recorded on a monkey during a sensory-motor task.Electronic Supplementary MaterialThe online version of this article (doi:10.1186/2190-8567-4-3) contains supplementary material.
在处理经典尖峰序列分析时,从业者通常会进行拟合优度检验,以测试所观察的过程是否为泊松过程,或者它是否服从其他类型的概率模型(Yana 等人,《生物物理学杂志》46(3):323-330, 1984;Brown 等人,《神经计算》14(2):325-346, 2002;Pouzat 和 Chaffiol,技术报告,http://arxiv.org/abs/arXiv:0909.2785, 2009)。在进行这种检验时,有一个基本的插件步骤,即估计假定的基础模型的参数。本文的目的是表明插件有时会产生非常不理想的效果。我们提出了一种基于子采样的新方法来处理柯尔莫哥洛夫-斯米尔诺夫均匀性检验中的这些插件问题。该方法依赖于对基础模型的良好估计的插件,这些估计必须与受控的收敛速度一致。在泊松或 Hawkes 框架中,我们强调了一些满足这些约束的非参数估计。此外,它们具有自适应特性,从实际角度来看非常有用。我们在模拟数据上展示了这些方法的性能。我们还使用这些工具对猴子在感觉运动任务中记录的单个单元活动进行了完整的分析。
补充材料
本文的在线版本(doi:10.1186/2190-8567-4-3)包含补充材料。