Suppr超能文献

复杂磁流体动力学低雷诺数流动

Complex magnetohydrodynamic low-Reynolds-number flows.

作者信息

Xiang Yu, Bau Haim H

机构信息

Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6315, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Jul;68(1 Pt 2):016312. doi: 10.1103/PhysRevE.68.016312. Epub 2003 Jul 28.

Abstract

The interaction between electric currents and a magnetic field is used to produce body (Lorentz) forces in electrolyte solutions. By appropriate patterning of the electrodes, one can conveniently control the direction and magnitude of the electric currents and induce spatially and temporally complicated flow patterns. This capability is useful, not only for fundamental flow studies, but also for inducing fluid flow and stirring in minute devices in which the incorporation of moving components may be difficult. This paper focuses on a theoretical and experimental study of magnetohydrodynamic flows in a conduit with a rectangular cross section. The conduit is equipped with individually controlled electrodes uniformly spaced at a pitch L. The electrodes are aligned transversely to the conduit's axis. The entire device is subjected to a uniform magnetic field. The electrodes are divided into two groups A and C in such a way that there is an electrode of group C between any two electrodes of group A. We denote the various A and C electrodes with subscripts, i.e., A(i) and C(i), where i=0,+/-1,+/-2, .... When positive and negative potentials are, respectively, applied to the even and odd numbered A electrodes, opposing electric currents are induced on the right and left hand sides of each A electrode. These currents generate transverse forces that drive cellular convection in the conduit. We refer to the resulting flow pattern as A. When electrodes of group C are activated, a similar flow pattern results, albeit shifted in space. We refer to this flow pattern as C. By alternating periodically between patterns A and C, one induces Lagrangian chaos. Such chaotic advection may be beneficial for stirring fluids, particularly in microfluidic devices. Since the flow patterns A and C are shifted in space, they also provide a mechanism for Lagrangian drift that allows net migration of passive tracers along the conduit's length.

摘要

电流与磁场之间的相互作用被用于在电解质溶液中产生体积(洛伦兹)力。通过对电极进行适当的图案化处理,可以方便地控制电流的方向和大小,并诱导出空间和时间上复杂的流动模式。这种能力不仅对基础流动研究有用,而且对于在难以纳入移动部件的微小装置中诱导流体流动和搅拌也很有用。本文重点研究了具有矩形横截面的管道中磁流体动力学流动的理论和实验。该管道配备有以间距L均匀间隔排列的独立控制电极。电极横向于管道轴线排列。整个装置处于均匀磁场中。电极被分为A组和C组,使得在A组的任意两个电极之间有一个C组电极。我们用下标表示各个A电极和C电极,即A(i)和C(i),其中i = 0, ±1, ±2, …… 当分别对偶数和奇数编号的A电极施加正电位和负电位时,在每个A电极的右侧和左侧会感应出相反的电流。这些电流产生横向力,驱动管道中的细胞对流。我们将由此产生的流动模式称为A。当C组电极被激活时,会产生类似的流动模式,尽管在空间上有所偏移。我们将这种流动模式称为C。通过在模式A和C之间周期性交替,可以诱导拉格朗日混沌。这种混沌平流对于搅拌流体可能是有益的,特别是在微流体装置中。由于流动模式A和C在空间上发生了偏移,它们还提供了一种拉格朗日漂移机制,使得被动示踪剂能够沿着管道长度进行净迁移。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验