Suppr超能文献

人类尸检材料中脓毒症诱导性肺损伤的免疫组织化学检测

Immunohistochemical detection of sepsis-induced lung injury in human autopsy material.

作者信息

Tsokos Michael

机构信息

Institute of Legal Medicine, University of Hamburg, Butenfeld 34, D-22529, Hamburg, Germany.

出版信息

Leg Med (Tokyo). 2003 Jun;5(2):73-86. doi: 10.1016/s1344-6223(03)00010-5.

Abstract

This review addresses our present-day knowledge on the role of different cellular adhesion molecules, cytokines and glycoproteins for the detection of sepsis-induced injury in the microvasculature of the human lung using immunohistochemistry. Through the induction and modulation of endothelial cell adhesion molecules, such as E-selectin (CD 62E), the vascular endothelium controls leukocyte extravasation into tissue. E-Selectin, not expressed by unstimulated endothelium, is activated by cytokines and initiates neutrophil recruitment in sepsis-induced lung injury. Since E-selectin is strongly expressed in the pulmonary microvasculature in sepsis-associated fatalities, the immunohistochemical detection of an intense expression of E-selectin in lung tissue is a valuable diagnostic tool in the forensic postmortem elucidation of death due to sepsis. VLA-4 (CD49d/CD29) is strongly expressed on intravascular, interstitial and intra-alveolar leukocytes in sepsis-associated fatalities, whereas in non-septic fatalities an irregular weak immunoreactivity can be observed on interstitial leukocytes and no positive immunohistochemical expression can be observed on intravascular or intra-alveolar leukocytes. ICAM-1 (CD54) is strongly expressed on endothelial cells of the pulmonary microvasculature and on pulmonary macrophages and lymphocytes in sepsis-associated fatalities. In contrast, an infrequent weak immunohistochemical reaction for ICAM-1 is found on pulmonary endothelium and on perivascular leukocytes in non-septic fatalities. The up-regulation of both cellular adhesion molecules can be considered as an useful immunohistochemical postmortem marker of sepsis. Lactoferrin (LF) is an iron-binding glycoprotein located in specific (secondary) granules of leukocytes and plays a central role in the host response to infectious stimuli in providing both bacteriostatic and bactericidal protection. There is a statistically significant association between an enhanced expression of LF on pulmonary leukocytes in sepsis-related fatalities in contrast to non-septic controls. The immunohistochemical detection of an enhanced expression of LF can contribute to the postmortem discrimination between sepsis and non-septic fatalities. Application of carbohydrate-specific lectins (ConA, UEA, GSA I, GSA II, MPA, PNA, Jac, WGA, MAA, LPA, SNA) on deparaffinated lung tissue sections from sepsis-associated fatalities and control cases results to some extent in different staining patterns of alveolar epithelial cells and subepithelial seromucous glands of the bronchi. Apart from differences in binding sites for alpha-mannose, N-acetyl-neuraminic acid and alpha-(2-6)-galactose (as detected by different expression for ConA, MAA and SNA), the main finding is that no binding sites for alpha-N-acetyl-galactosamine (as investigated by MPA immunoreactivity) can be detected on alveolar epithelial cells and mucous parts of subepithelial seromucous glands in sepsis cases in contrast to the presence of such binding sites in controls. Since most intracellular pathogens persist in macrophages and epithelial cells during infection, it is likely that these pathogens contribute to a continual deprivation or consumption, respectively, of glycoproteins physiologically secreted by alveolar epithelial and glandular cells at different time points and stages of infection and may, among other mechanisms, by reducing pathogen clearance amplify the inflammatory response. Vascular endothelial growth factor (VEGF), an angiogenic and chemotactic peptide, is abundantly expressed in normal lung tissue, especially in alveolar and bronchial epithelium, glandular cells of the bronchi, and activated alveolar macrophages. Pulmonary VEGF immunostaining differs in sepsis when compared to healthy individuals. In the latter a preponderant strong VEGF immunoreaction can be found on alveolar epithelium (predominately type II pneumocytes), bronchial epithelium and glandular cells of the bronchi and bronchioli, and activated alveolar macrophages. In contrast, in sepsis no VEGF immunopositivity can beivity can be observed on bronchial epithelium or glandular cells of the bronchi and bronchioli, and no or relatively sparse VEGF immunoreactivity is found on alveolar epithelial cells. The precise mechanisms of the decreased pulmonary VEGF expression in septic patients under conditions of intensive care medicine are not clear at present. During the complex cascade of excessive pro-inflammatory and anti-inflammatory mediator release involved in the host's systemic inflammatory response in the development of sepsis-induced lung injury, VEGF expression may be suppressed in sepsis by a hitherto not identified agent or the interaction of different mediators of cellular inflammation. For the detection of sepsis-induced lung injury the aforementioned markers can be used sufficiently, e.g. to give immunohistochemical evidence of a previously undiagnosed sepsis and to confirm or rule out a presumed diagnosis of a sepsis-associated fatality. The employment of the presented immunohistochemical methods will be particularly helpful when macroscopical and routine histological autopsy findings in cases of suspected fatal sepsis are unspecific or unconvincing, respectively, and clinical data on the patient's previous history are not available. Referring to the forensic argumentation regarding causality on the subject of possibly fatal septic complications, e.g. in the sequel of diagnostic or therapeutic iatrogenic injection procedures or being relevant to pressure sore-associated fatalities, aetiopathogenetic conclusions can be optimized on the basis of the described micromorphological investigations.

摘要

本综述阐述了我们目前对于不同细胞黏附分子、细胞因子和糖蛋白在采用免疫组织化学检测人肺微血管中脓毒症诱导损伤方面的认识。通过诱导和调节内皮细胞黏附分子,如E-选择素(CD 62E),血管内皮控制白细胞向组织的渗出。未受刺激的内皮细胞不表达E-选择素,其由细胞因子激活,并在脓毒症诱导的肺损伤中启动中性粒细胞募集。由于E-选择素在脓毒症相关死亡病例的肺微血管中强烈表达,因此在肺组织中免疫组织化学检测到E-选择素的强烈表达是法医尸检阐明脓毒症所致死亡的一种有价值的诊断工具。在脓毒症相关死亡病例中,VLA-4(CD49d/CD29)在血管内、间质和肺泡内白细胞上强烈表达,而在非脓毒症死亡病例中,在间质白细胞上可观察到不规则的弱阳性免疫反应,在血管内或肺泡内白细胞上未观察到阳性免疫组织化学表达。ICAM-1(CD54)在脓毒症相关死亡病例的肺微血管内皮细胞以及肺巨噬细胞和淋巴细胞上强烈表达。相比之下,在非脓毒症死亡病例的肺内皮和血管周围白细胞上发现ICAM-1的免疫组织化学反应较弱且不常见。这两种细胞黏附分子的上调可被视为脓毒症有用的免疫组织化学死后标志物。乳铁蛋白(LF)是一种位于白细胞特定(次级)颗粒中的铁结合糖蛋白,在宿主对感染性刺激的反应中发挥核心作用,提供抑菌和杀菌保护。与非脓毒症对照组相比,脓毒症相关死亡病例中肺白细胞上LF表达增强存在统计学显著关联。免疫组织化学检测到LF表达增强有助于在死后区分脓毒症和非脓毒症死亡病例。将碳水化合物特异性凝集素(ConA、UEA、GSA I、GSA II、MPA、PNA、Jac、WGA、MAA、LPA、SNA)应用于脓毒症相关死亡病例和对照病例的脱蜡肺组织切片,在一定程度上导致肺泡上皮细胞和支气管黏膜下腺的染色模式不同。除了α-甘露糖、N-乙酰神经氨酸和α-(2-6)-半乳糖的结合位点存在差异(通过ConA、MAA和SNA的不同表达检测)外,主要发现是与对照组存在此类结合位点相反,在脓毒症病例的肺泡上皮细胞和黏膜下腺的黏液部分未检测到α-N-乙酰半乳糖胺的结合位点(通过MPA免疫反应性研究)。由于大多数细胞内病原体在感染期间持续存在于巨噬细胞和上皮细胞中,这些病原体可能分别导致肺泡上皮和腺细胞在感染的不同时间点和阶段生理分泌的糖蛋白持续剥夺或消耗,并且除其他机制外,可能通过减少病原体清除来放大炎症反应。血管内皮生长因子(VEGF)是一种血管生成和趋化肽,在正常肺组织中大量表达,尤其是在肺泡和支气管上皮、支气管腺细胞以及活化的肺泡巨噬细胞中。与健康个体相比,脓毒症时肺VEGF免疫染色不同。在健康个体中,在肺泡上皮(主要是II型肺泡细胞)、支气管上皮和支气管及细支气管的腺细胞以及活化的肺泡巨噬细胞上可发现主要为强VEGF免疫反应。相比之下,在脓毒症中,在支气管上皮或支气管及细支气管的腺细胞上未观察到VEGF免疫阳性,在肺泡上皮细胞上未发现或仅发现相对稀疏的VEGF免疫反应。目前尚不清楚重症监护医学条件下脓毒症患者肺VEGF表达降低的确切机制。在脓毒症诱导的肺损伤发生过程中,宿主全身炎症反应涉及复杂的过度促炎和抗炎介质释放级联反应,VEGF表达可能在脓毒症中被一种迄今未明确的因子或细胞炎症的不同介质相互作用所抑制。为了检测脓毒症诱导的肺损伤,上述标志物可充分发挥作用,例如提供免疫组织化学证据证明先前未诊断的脓毒症,并确认或排除脓毒症相关死亡的推测诊断。当疑似致命脓毒症病例的宏观和常规组织学尸检结果分别不具有特异性或说服力,且没有患者既往病史的临床数据时,采用本文所述的免疫组织化学方法将特别有帮助。关于可能致命的脓毒症并发症(例如在诊断或治疗性医源性注射程序之后,或与压疮相关的死亡)因果关系的法医论证方面,基于所描述的微观形态学研究可以优化病因发病学结论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验