Suppr超能文献

探寻饮食流行病学中的真相。

A search for truth in dietary epidemiology.

作者信息

Fraser Gary E

机构信息

Department of Epidemiology and Biostatistics, Loma Linda University, Loma Linda, CA 92350, USA.

出版信息

Am J Clin Nutr. 2003 Sep;78(3 Suppl):521S-525S. doi: 10.1093/ajcn/78.3.521S.

Abstract

Although results from epidemiologic studies of diet have taught us a great deal, much of the evidence remains mired in controversy because of the inconsistency of results among apparently good studies. I conclude that this can be largely explained by the combination of 2 problems: confounding and measurement error. This recognition allows some judgment as to which studies may be less prone to these difficulties and a search for new analytic methods that can produce less biased and more consistent results. The potential correlations between many nutrients, and to a lesser extent foods, make it difficult to know whether the nominated variable is actually the active principle or whether there is some other dietary risk factor that is closely associated. It is not generally recognized that all traditional analyses of this sort are based on a powerful but incorrect assumption: that there are no errors in dietary assessment. If the incorrect assumption is not satisfied, relative risk estimates become distorted-reduced by one-half or more in some cases. Regression calibration is a newer technique that uses a calibration substudy to provide information about errors and to correct results from the main study. There are a number of variants of this technique, all requiring assumptions about the data. Regression calibration methods that use carefully selected biological surrogates (correlates) of the dietary factor of interest in the calibration study seem to use more realistic assumptions.

摘要

尽管饮食流行病学研究的结果给了我们很多启示,但由于一些看似不错的研究结果不一致,许多证据仍深陷争议之中。我认为,这在很大程度上可以由两个问题来解释:混杂因素和测量误差。这种认识有助于我们判断哪些研究可能不太容易出现这些问题,并寻找能够产生偏差更小、更一致结果的新分析方法。许多营养素之间以及在较小程度上食物之间存在潜在的相关性,这使得我们很难确定所指定的变量是否真的是活性成分,或者是否存在与之密切相关的其他饮食风险因素。人们普遍没有认识到,所有这类传统分析都基于一个强大但错误的假设:饮食评估不存在误差。如果这个错误假设不成立,相对风险估计就会失真——在某些情况下会降低一半或更多。回归校准是一种较新的技术,它利用校准子研究来提供有关误差的信息,并校正主要研究结果。这种技术有多种变体,都需要对数据做出假设。在校准研究中使用精心挑选的目标饮食因素的生物学替代指标(相关指标)的回归校准方法,似乎采用了更现实的假设。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验