Foffani G, Priori A, Egidi M, Rampini P, Tamma F, Caputo E, Moxon K A, Cerutti S, Barbieri S
Department of Neurological Sciences, Università di Milano, IRCCS Ospedale Maggiore di Milano, Milano, Italy.
Brain. 2003 Oct;126(Pt 10):2153-63. doi: 10.1093/brain/awg229. Epub 2003 Aug 22.
Despite several studies and models, much remains unclear about how the human basal ganglia operate. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for complicated Parkinson's disease, but how DBS acts also remains unknown. The clinical benefit of DBS at frequencies >100 Hz suggests the possible importance of neural rhythms operating at frequencies higher than the range normally considered for basal ganglia processing (<100 Hz). The electrodes implanted for DBS also offer the opportunity to record neural activity from the human basal ganglia. This study aimed to assess whether oscillations at frequencies >100 Hz operate in the human STN. While recording local field potentials from the STN of nine patients with Parkinson's disease through DBS electrodes, we found a dopamine- and movement-dependent 300-Hz rhythm. At rest, and in the absence of dopaminergic medication, in most cases (eight out of 11 nuclei) the 100-1000 Hz band showed no consistent rhythm. Levodopa administration elicited (or markedly increased) a 300-Hz rhythm at rest [(mean +/- SD) central frequency: 319 +/- 33 Hz; bandwidth: 72 +/- 21 Hz; power increase (after medication - before medication)/before medication: 1.30 +/- 1.25; n = 11, P = 0.00098]. The 300-Hz rhythm was also increased by apomorphine, but not by orphenadrine. The 300-Hz rhythm was modulated by voluntary movement. Before levodopa administration, movement-related power increase in the 300-Hz rhythm was variably present in different subjects, whereas after levodopa it became a robust phenomenon [before 0.014 +/- 0.014 arbitrary units (AU), after 0.178 +/- 0.339 AU; n = 8, P = 0.0078]. The dopamine-dependent 300-Hz rhythm probably reflects a bistable compound nuclear activity and supports high-resolution information processing in the basal ganglia circuit. An absent 300-Hz subthalamic rhythm could be a pathophysiological clue in Parkinson's disease. The 300-Hz rhythm also provides the rationale for an excitatory--and not only inhibitory--interpretation of DBS mechanism of action in humans.
尽管已有多项研究和模型,但人类基底神经节如何运作仍有很多不明确之处。丘脑底核(STN)的深部脑刺激(DBS)是治疗复杂性帕金森病的一种有效方法,但其作用机制也尚不清楚。频率大于100Hz的DBS的临床益处表明,高于基底神经节处理通常所考虑频率范围(<100Hz)的神经节律可能具有重要意义。为进行DBS植入的电极也提供了记录人类基底神经节神经活动的机会。本研究旨在评估频率大于100Hz的振荡是否在人类丘脑底核中起作用。在通过DBS电极记录9例帕金森病患者丘脑底核的局部场电位时,我们发现了一种依赖多巴胺和运动的300Hz节律。在静息状态且未服用多巴胺能药物时,在大多数情况下(11个核中的8个),100 - 1000Hz频段未显示出一致的节律。左旋多巴给药可引发(或显著增加)静息状态下的300Hz节律[(平均值±标准差)中心频率:319±33Hz;带宽:72±21Hz;功率增加(用药后 - 用药前)/用药前:1.30±1.25;n = 11,P = 0.00098]。阿扑吗啡也可增加300Hz节律,但奥芬那君则无此作用。300Hz节律受自主运动调节。在给予左旋多巴之前,不同受试者中300Hz节律与运动相关的功率增加情况各不相同,而给予左旋多巴后,这成为一种明显的现象[给药前0.014±0.014任意单位(AU),给药后0.178±0.339AU;n = 8,P = 0.0078]。依赖多巴胺的300Hz节律可能反映了一种双稳态复合核活动,并支持基底神经节回路中的高分辨率信息处理。缺乏300Hz丘脑底核节律可能是帕金森病的一个病理生理线索。300Hz节律也为人类DBS作用机制的兴奋性(而非仅抑制性)解释提供了理论依据。