Suppr超能文献

植物多药耐药ABC转运蛋白AtMRP5参与保卫细胞激素信号传导和水分利用。

The plant multidrug resistance ABC transporter AtMRP5 is involved in guard cell hormonal signalling and water use.

作者信息

Klein Markus, Perfus-Barbeoch Laetitia, Frelet Annie, Gaedeke Nicola, Reinhardt Didier, Mueller-Roeber Bernd, Martinoia Enrico, Forestier Cyrille

机构信息

Institut de Botanique, Laboratoire de Physiologie Végétale, Université de Neuchâtel, Rue Emile Argand 13, CH-2007 Neuchâtel, Switzerland.

出版信息

Plant J. 2003 Jan;33(1):119-29. doi: 10.1046/j.1365-313x.2003.016012.x.

Abstract

Carbon dioxide uptake and water release through stomata, controlling the opening and closure of stomatal pore size in the leaf surface, is critical for optimal plant performance. Stomatal movements are regulated by multiple signalling pathways involving guard cell ion channels. Using reverse genetics, we recently isolated a T-DNA insertion mutant for the Arabidopsis ABC-transporter AtMRP5 (mrp5-1). Guard cells from mrp5-1 mutant plants were found to be insensitive to the sulfonylurea compound glibenclamide, which in the wild type induces stomatal opening in the dark. Here, we report that the knockout in AtMRP5 affects several signalling pathways controlling stomatal movements. Stomatal apertures of mrp5-1 and wild-type Ws-2 were identical in the dark. In contrast, opening of stomata of mrp5-1 plants was reduced in the light. In the light, stomatal closure of mrp5-1 was insensitive to external calcium and abscisic acid, a phytohormone responsible for stomatal closure during drought stress. In contrast to Ws-2, the phytohormone auxin could not stimulate stomatal opening in the mutant in darkness. All stomatal phenotypes were complemented in transgenic mrp5-1 plants transformed with a cauliflower mosaic virus (CaMV) 35S-AtMRP5 construct. Both whole-plant and single-leaf gas exchange measurements demonstrated a reduced transpiration rate of mrp5-1 in the light. Excised leaves of mutant plants exhibited reduced water loss, and water uptake was strongly decreased at the whole-plant level. Finally, if plants were not watered, mrp5-1 plants survived much longer due to reduced water use. Analysis of CO2 uptake and transpiration showed that mrp5-1 plants have increased water use efficiency. Mutant plants overexpressing AtMRP5 under the control of the CaMV 35S promoter again exhibited wild-type characteristics. These results demonstrate that multidrug resistance-associated proteins (MRPs) are important components of guard cell functioning.

摘要

通过气孔吸收二氧化碳并释放水分,控制叶片表面气孔孔径的开闭,对于植物的最佳性能至关重要。气孔运动受涉及保卫细胞离子通道的多种信号通路调控。利用反向遗传学,我们最近分离出拟南芥ABC转运蛋白AtMRP5的一个T-DNA插入突变体(mrp5-1)。发现mrp5-1突变体植物的保卫细胞对磺酰脲化合物格列本脲不敏感,而在野生型中该化合物可在黑暗中诱导气孔开放。在此,我们报告AtMRP5基因敲除影响了控制气孔运动的多个信号通路。mrp5-1和野生型Ws-2的气孔孔径在黑暗中相同。相反,mrp5-1植物的气孔在光照下开放程度降低。在光照下,mrp5-1的气孔关闭对外部钙和脱落酸不敏感,脱落酸是干旱胁迫期间负责气孔关闭的一种植物激素。与Ws-2不同,植物激素生长素在黑暗中不能刺激突变体的气孔开放。所有气孔表型在用花椰菜花叶病毒(CaMV)35S-AtMRP5构建体转化的转基因mrp5-1植物中得到互补。全株和单叶气体交换测量均表明mrp5-1在光照下蒸腾速率降低。突变体植物的离体叶片水分损失减少,全株水平的水分吸收大幅下降。最后,如果不给植物浇水,mrp5-1植物由于水分利用减少而存活时间长得多。对二氧化碳吸收和蒸腾的分析表明,mrp5-1植物的水分利用效率提高。在CaMV 35S启动子控制下过表达AtMRP5的突变体植物再次表现出野生型特征。这些结果表明多药耐药相关蛋白(MRPs)是保卫细胞功能的重要组成部分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验