Suppr超能文献

基于回旋加速器的硼中子俘获治疗的超热中子场可行性研究。

Feasibility study on epithermal neutron field for cyclotron-based boron neutron capture therapy.

作者信息

Yonai Shunsuke, Aoki Takao, Nakamura Takashi, Yashima Hiroshi, Baba Mamoru, Yokobori Hitoshi, Tahara Yoshihisa

机构信息

Department of Quantum Science and Energy Engineering, Tohoku University, Aoba Aramaki Aoba-ku, Sendai, Japan.

出版信息

Med Phys. 2003 Aug;30(8):2021-30. doi: 10.1118/1.1587431.

Abstract

To realize the accelerator-based boron neutron capture therapy (BNCT) at the Cyclotron and Radioisotope Center of Tohoku University, the feasibility of a cyclotron-based BNCT was evaluated. This study focuses on optimizing the epithermal neutron field with an energy spectrum and intensity suitable for BNCT for various combinations of neutron-producing reactions and moderator materials. Neutrons emitted at 90 degrees from a thick (stopping-length) Ta target, bombarded by 50 MeV protons of 300 microA beam current, were selected as a neutron source, based on the measurement of angular distributions and neutron energy spectra. As assembly composed of iron, AlF3/Al/6LiF, and lead was chosen as moderators, based on the simulation trials using the MCNPX code. The depth dose distributions in a cylindrical phantom, calculated with the MCNPX code, showed that, within 1 h of therapeutic time, the best moderator assembly, which is 30-cm-thick iron, 39-cm-thick AlF3/Al/6LiF, and 1-cm-thick lead, provides an epithermal neutron flux of 0.7 x 10(9) [n cm(-2) s(-1)]. This results in a tumor dose of 20.9 Gy-eq at a depth of 8 cm in the phantom, which is 6.4 Gy-eq higher than that of the Brookhaven Medical Research Reactor at the equivalent condition of maximum normal tissue tolerance. The beam power of the cyclotron is 15 kW, which is much lower than other accelerator-based BNCT proposals.

摘要

为了在东北大学回旋加速器与放射性同位素中心实现基于加速器的硼中子俘获疗法(BNCT),对基于回旋加速器的BNCT的可行性进行了评估。本研究着重于针对中子产生反应和慢化剂材料的各种组合,优化具有适合BNCT的能谱和强度的超热中子场。基于角分布和中子能谱的测量,选择了由300 μA束流的50 MeV质子轰击厚(阻止长度)Ta靶在90度方向发射的中子作为中子源。基于使用MCNPX代码的模拟试验,选择了由铁、AlF3/Al/6LiF和铅组成的组件作为慢化剂。用MCNPX代码计算的圆柱形模体中的深度剂量分布表明,在1小时治疗时间内,最佳慢化剂组件(30 cm厚的铁、39 cm厚的AlF3/Al/6LiF和1 cm厚的铅)提供的超热中子通量为0.7×10⁹ [n cm⁻² s⁻¹]。这导致在模体中8 cm深度处的肿瘤剂量为20.9 Gy-eq,比在最大正常组织耐受等效条件下的布鲁克海文医学研究反应堆的剂量高6.4 Gy-eq。回旋加速器的束功率为15 kW,远低于其他基于加速器的BNCT方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验