Suppr超能文献

减少基于体积图像的可变形器官配准中的不确定性。

Reducing uncertainties in volumetric image based deformable organ registration.

作者信息

Liang J, Yan D

机构信息

Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan 48073, USA.

出版信息

Med Phys. 2003 Aug;30(8):2116-22. doi: 10.1118/1.1587631.

Abstract

Applying volumetric image feedback in radiotherapy requires image based deformable organ registration. The foundation of this registration is the ability of tracking subvolume displacement in organs of interest. Subvolume displacement can be calculated by applying biomechanics model and the finite element method to human organs manifested on the multiple volumetric images. The calculation accuracy, however, is highly dependent on the determination of the corresponding organ boundary points. Lacking sufficient information for such determination, uncertainties are inevitable-thus diminishing the registration accuracy. In this paper, a method of consuming energy minimization was developed to reduce these uncertainties. Starting from an initial selection of organ boundary point correspondence on volumetric image sets, the subvolume displacement and stress distribution of the whole organ are calculated and the consumed energy due to the subvolume displacements is computed accordingly. The corresponding positions of the initially selected boundary points are then iteratively optimized to minimize the consuming energy under geometry and stress constraints. In this study, a rectal wall delineated from patient CT image was artificially deformed using a computer simulation and utilized to test the optimization. Subvolume displacements calculated based on the optimized boundary point correspondence were compared to the true displacements, and the calculation accuracy was thereby evaluated. Results demonstrate that a significant improvement on the accuracy of the deformable organ registration can be achieved by applying the consuming energy minimization in the organ deformation calculation.

摘要

在放射治疗中应用体积图像反馈需要基于图像的可变形器官配准。这种配准的基础是跟踪感兴趣器官中体素位移的能力。体素位移可以通过将生物力学模型和有限元方法应用于在多个体积图像上显示的人体器官来计算。然而,计算精度高度依赖于相应器官边界点的确定。由于缺乏足够的信息进行此类确定,不确定性不可避免,从而降低了配准精度。本文提出了一种能量消耗最小化方法来减少这些不确定性。从体积图像集上器官边界点对应的初始选择开始,计算整个器官的体素位移和应力分布,并相应地计算由于体素位移产生的能量消耗。然后在几何和应力约束下迭代优化初始选择的边界点的相应位置,以最小化能量消耗。在本研究中,使用计算机模拟对从患者CT图像中勾勒出的直肠壁进行人工变形,并用于测试优化。将基于优化后的边界点对应计算得到的体素位移与真实位移进行比较,从而评估计算精度。结果表明,通过在器官变形计算中应用能量消耗最小化,可以显著提高可变形器官配准的精度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验