Kitajima Hiroyuki, Yoshinaga Tetsuya, Aihara Kazuyuki, Kawakami Hiroshi
Faculty of Engineering, Kagawa University, 2217-20 Hayashi, Takamatsu 761-0396, Japan.
Chaos. 2003 Sep;13(3):1122-32. doi: 10.1063/1.1601912.
We have considered itinerant memory dynamics in a chaotic neural network composed of four chaotic neurons with synaptic connections determined by two orthogonal stored patterns as a simple example of a chaotic itinerant phenomenon in dynamical associative memory. We have analyzed a mechanism of generating the itinerant memory dynamics with respect to intersection of a pair of alpha branches of periodic points and collapse of a periodic in-phase attracting set. The intersection of invariant sets is numerically verified by a novel method proposed in this paper.
我们将由四个混沌神经元组成的混沌神经网络中的巡回记忆动力学作为动态联想记忆中混沌巡回现象的一个简单例子进行了研究,该网络的突触连接由两个正交存储模式决定。我们分析了关于周期点的一对α分支的相交以及周期同相吸引集的崩溃产生巡回记忆动力学的机制。不变集的相交通过本文提出的一种新方法进行了数值验证。