Suppr超能文献

用于功能蛋白质组学的高通量蛋白质生产。

High throughput protein production for functional proteomics.

作者信息

Braun Pascal, LaBaer Josh

机构信息

Harvard University, Department for Chemistry and Chemical Biology, 12 Oxford Street, Cambridge, MA 02138, USA.

出版信息

Trends Biotechnol. 2003 Sep;21(9):383-8. doi: 10.1016/S0167-7799(03)00189-6.

Abstract

A major impact of genome projects on human health will be their contribution to the understanding of protein function. Proteins are the engines of biological systems, nearly all pharmaceuticals act on proteins and increasingly proteins themselves are used therapeutically. As biology enters the post-genomic era, researchers have begun to embrace the exciting opportunity of investigating proteins in high throughput (HT) experiments. The study of proteins includes a vast array of techniques ranging from enzyme catalysis assays to interaction and structural studies. Many of these methods depend on purified proteins. The discovery of thousands of novel protein-coding sequences and the increased availability of large cDNA collections provide the opportunity to investigate protein function in a systematic manner and at an unprecedented scale. This opportunity highlights the need for development of HT methods for protein isolation. This article describes the challenges faced and the approaches taken to develop proteome-scale protein expression systems.

摘要

基因组计划对人类健康的一个重大影响将是它们对理解蛋白质功能的贡献。蛋白质是生物系统的引擎,几乎所有药物都作用于蛋白质,并且越来越多的蛋白质本身也被用于治疗。随着生物学进入后基因组时代,研究人员已开始抓住在高通量(HT)实验中研究蛋白质这一令人兴奋的机会。蛋白质研究包括从酶催化测定到相互作用和结构研究等大量技术。这些方法中的许多都依赖于纯化的蛋白质。数以千计新的蛋白质编码序列的发现以及大量cDNA文库可用性的增加,为以系统方式和前所未有的规模研究蛋白质功能提供了机会。这一机会凸显了开发用于蛋白质分离的高通量方法的必要性。本文描述了所面临的挑战以及为开发蛋白质组规模的蛋白质表达系统所采取的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验