Suppr超能文献

在报告样本量计算的随机试验中效能不足。

Underpowering in randomized trials reporting a sample size calculation.

作者信息

Vickers Andrew J

机构信息

Integrative Medicine Service, Biostatistics Service, Memorial Sloan Kettering Cancer Center, Howard 1312a, 1275 York Avenue, NY 10021, USA.

出版信息

J Clin Epidemiol. 2003 Aug;56(8):717-20. doi: 10.1016/s0895-4356(03)00141-0.

Abstract

OBJECTIVE

The objective of this study was to determine whether standard deviations (SDs) used in sample size calculations are smaller than those found in the resulting study sample, thereby leading to underpowered studies.

METHOD

The predicted SD used in the sample size calculation and the actual SD of the study sample were recorded for randomized trials recently published in one of four major journals.

RESULTS

Sample SD was greater than predicted SD for 80% of endpoints. About one quarter of trials required five times as many patients as specified in the sample size calculation.

CONCLUSION

Trials reporting sample size calculations for continuous endpoints published in the most reputable medical journals are often underpowered. There seems to be insufficient understanding that the SD of a sample of patients is a random variable, associated with imprecision, that cannot easily be extrapolated from one population to another.

摘要

目的

本研究的目的是确定样本量计算中使用的标准差(SD)是否小于最终研究样本中的标准差,从而导致研究效能不足。

方法

记录最近发表在四大期刊之一上的随机试验中样本量计算所使用的预测标准差以及研究样本的实际标准差。

结果

80%的终点指标样本标准差大于预测标准差。约四分之一的试验所需患者数量是样本量计算中规定数量的五倍。

结论

在最具声誉的医学期刊上发表的报告连续终点指标样本量计算的试验往往效能不足。似乎人们对患者样本的标准差是一个与不精确性相关的随机变量认识不足,该变量不易从一个总体外推至另一个总体。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验