Suppr超能文献

致命七/Notch1a基因的突变揭示了逃逸反应回路中的发育可塑性。

Mutations in deadly seven/notch1a reveal developmental plasticity in the escape response circuit.

作者信息

Liu Katharine S, Gray Michelle, Otto Stefanie J, Fetcho Joseph R, Beattie Christine E

机构信息

Department of Neurobiology, State University of New York at Stony Brook, Stony Brook, New York 11794, USA.

出版信息

J Neurosci. 2003 Sep 3;23(22):8159-66. doi: 10.1523/JNEUROSCI.23-22-08159.2003.

Abstract

The relatively simple neural circuit driving the escape response in zebrafish offers an excellent opportunity to study properties of neural circuit formation. The hindbrain Mauthner cell is an essential component of this circuit. Mutations in the zebrafish deadly seven/notch1a (des) gene result in supernumerary Mauthner cells. We addressed whether and how these extra cells are incorporated into the escape-response circuit. Calcium imaging revealed that all Mauthner cells in desb420 mutants were active during an elicited escape response. However, the kinematic performance of the escape response in mutant larvae was very similar to wild-type fish. Analysis of the relationship between Mauthner axon collaterals and spinal neurons revealed that there was a decrease in the number of axon collaterals per Mauthner axon in mutant larvae compared with wild-type larvae, indicative of a decrease in the number of synapses formed with target spinal neurons. Moreover, we show that Mauthner axons projecting on the same side of the nervous system have primarily nonoverlapping collaterals. These data support the hypothesis that excess Mauthner cells are incorporated into the escape-response circuit, but they divide their target territory to maintain a normal response, thus demonstrating plasticity in the formation of the escape-response circuit. Such plasticity may be key to the evolution of the startle responses in mammals, which use larger populations of neurons in circuits similar to those in the fish escape response.

摘要

驱动斑马鱼逃避反应的相对简单的神经回路为研究神经回路形成的特性提供了绝佳机会。后脑的Mauthner细胞是该回路的重要组成部分。斑马鱼致死七基因/Notch1a(des)突变会导致Mauthner细胞数量过多。我们研究了这些额外的细胞是否以及如何被纳入逃避反应回路。钙成像显示,在诱发的逃避反应过程中,desb420突变体中的所有Mauthner细胞都处于活跃状态。然而,突变体幼虫逃避反应的运动学表现与野生型鱼类非常相似。对Mauthner轴突侧支与脊髓神经元之间关系的分析表明,与野生型幼虫相比,突变体幼虫中每个Mauthner轴突的轴突侧支数量减少,这表明与目标脊髓神经元形成的突触数量减少。此外,我们发现投射在神经系统同一侧的Mauthner轴突主要具有不重叠的侧支。这些数据支持这样一种假设,即多余的Mauthner细胞被纳入逃避反应回路,但它们会划分其目标区域以维持正常反应,从而证明了逃避反应回路形成过程中的可塑性。这种可塑性可能是哺乳动物惊吓反应进化的关键,哺乳动物在类似于鱼类逃避反应的回路中使用大量神经元。

相似文献

1
Mutations in deadly seven/notch1a reveal developmental plasticity in the escape response circuit.
J Neurosci. 2003 Sep 3;23(22):8159-66. doi: 10.1523/JNEUROSCI.23-22-08159.2003.
2
Behavioral Role of the Reciprocal Inhibition between a Pair of Mauthner Cells during Fast Escapes in Zebrafish.
J Neurosci. 2019 Feb 13;39(7):1182-1194. doi: 10.1523/JNEUROSCI.1964-18.2018. Epub 2018 Dec 21.
3
Celsr3 drives development and connectivity of the acoustic startle hindbrain circuit.
PLoS Genet. 2024 Oct 21;20(10):e1011415. doi: 10.1371/journal.pgen.1011415. eCollection 2024 Oct.
4
Evidence for a widespread brain stem escape network in larval zebrafish.
J Neurophysiol. 2002 Jan;87(1):608-14. doi: 10.1152/jn.00596.2001.
5
Hox gene misexpression and cell-specific lesions reveal functionality of homeotically transformed neurons.
J Neurosci. 2004 Mar 24;24(12):3070-6. doi: 10.1523/JNEUROSCI.5624-03.2004.
6
Zebrafish deadly seven functions in neurogenesis.
Dev Biol. 2001 Sep 15;237(2):306-23. doi: 10.1006/dbio.2001.0381.
7
Social Status-Dependent Shift in Neural Circuit Activation Affects Decision Making.
J Neurosci. 2017 Feb 22;37(8):2137-2148. doi: 10.1523/JNEUROSCI.1548-16.2017. Epub 2017 Jan 16.
8
Laser ablations reveal functional relationships of segmental hindbrain neurons in zebrafish.
Neuron. 1999 Jun;23(2):325-35. doi: 10.1016/s0896-6273(00)80783-7.
9
The Mauthner cell and other identified neurons of the brainstem escape network of fish.
Prog Neurobiol. 2001 Mar;63(4):467-85. doi: 10.1016/s0301-0082(00)00047-2.
10
β-Amyloid precursor protein-b is essential for Mauthner cell development in the zebrafish in a Notch-dependent manner.
Dev Biol. 2016 May 1;413(1):26-38. doi: 10.1016/j.ydbio.2016.03.012. Epub 2016 Mar 16.

引用本文的文献

2
Co-opting evo-devo concepts for new insights into mechanisms of behavioural diversity.
J Exp Biol. 2019 Apr 15;222(Pt 8):jeb190058. doi: 10.1242/jeb.190058.
4
Brain evolution by brain pathway duplication.
Philos Trans R Soc Lond B Biol Sci. 2015 Dec 19;370(1684). doi: 10.1098/rstb.2015.0056.
6
Short-term synaptic plasticity compensates for variability in number of motor neurons at a neuromuscular junction.
J Neurosci. 2012 Nov 7;32(45):16007-17. doi: 10.1523/JNEUROSCI.2584-12.2012.
7
Alternative startle motor patterns and behaviors in the larval zebrafish (Danio rerio).
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2012 Jan;198(1):11-24. doi: 10.1007/s00359-011-0682-1. Epub 2011 Oct 8.
8
Individual axons regulate the myelinating potential of single oligodendrocytes in vivo.
Development. 2011 Oct;138(20):4443-50. doi: 10.1242/dev.071001. Epub 2011 Aug 31.
9
Potential roles of Arnt2 in zebrafish larval development.
Zebrafish. 2009 Mar;6(1):79-91. doi: 10.1089/zeb.2008.0536.
10
An immunochemical marker for goldfish Mauthner cells.
J Neurosci Methods. 2008 Oct 30;175(1):64-9. doi: 10.1016/j.jneumeth.2008.08.009. Epub 2008 Aug 14.

本文引用的文献

3
Zebrafish deadly seven functions in neurogenesis.
Dev Biol. 2001 Sep 15;237(2):306-23. doi: 10.1006/dbio.2001.0381.
5
Single-cell electroporation for gene transfer in vivo.
Neuron. 2001 Mar;29(3):583-91. doi: 10.1016/s0896-6273(01)00235-5.
6
Laser ablations reveal functional relationships of segmental hindbrain neurons in zebrafish.
Neuron. 1999 Jun;23(2):325-35. doi: 10.1016/s0896-6273(00)80783-7.
7
Mutations affecting somite formation and patterning in the zebrafish, Danio rerio.
Development. 1996 Dec;123:153-64. doi: 10.1242/dev.123.1.153.
8
Imaging the functional organization of zebrafish hindbrain segments during escape behaviors.
Neuron. 1996 Dec;17(6):1145-55. doi: 10.1016/s0896-6273(00)80246-9.
9
The acoustic startle reflex: neurons and connections.
Brain Res Brain Res Rev. 1995 Nov;21(3):301-14. doi: 10.1016/0165-0173(96)00004-5.
10
Giant neurons in the rat reticular formation: a sensorimotor interface in the elementary acoustic startle circuit?
J Neurosci. 1994 Mar;14(3 Pt 1):1176-94. doi: 10.1523/JNEUROSCI.14-03-01176.1994.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验