Suppr超能文献

脑与颅骨形态的协同变化作为一种模型,用于理解发育和进化过程中串扰的作用。

Covariation of brain and skull shapes as a model to understand the role of crosstalk in development and evolution.

机构信息

Biology Department, University of Massachusetts Amherst, Amherst, Massachusetts, USA.

出版信息

Evol Dev. 2023 Jan;25(1):85-102. doi: 10.1111/ede.12421. Epub 2022 Nov 14.

Abstract

Covariation among discrete phenotypes can arise due to selection for shared functions, and/or shared genetic and developmental underpinnings. The consequences of such phenotypic integration are far-reaching and can act to either facilitate or limit morphological variation. The vertebrate brain is known to act as an "organizer" of craniofacial development, secreting morphogens that can affect the shape of the growing neurocranium, consistent with roles for pleiotropy in brain-neurocranium covariation. Here, we test this hypothesis in cichlid fishes by first examining the degree of shape integration between the brain and the neurocranium using three-dimensional geometric morphometrics in an F hybrid population, and then genetically mapping trait covariation using quantitative trait loci (QTL) analysis. We observe shape associations between the brain and the neurocranium, a pattern that holds even when we assess associations between the brain and constituent parts of the neurocranium: the rostrum and braincase. We also recover robust genetic signals for both hard- and soft-tissue traits and identify a genomic region where QTL for the brain and braincase overlap, implicating a role for pleiotropy in patterning trait covariation. Fine mapping of the overlapping genomic region identifies a candidate gene, notch1a, which is known to be involved in patterning skeletal and neural tissues during development. Taken together, these data offer a genetic hypothesis for brain-neurocranium covariation, as well as a potential mechanism by which behavioral shifts may simultaneously drive rapid change in neuroanatomy and craniofacial morphology.

摘要

离散表型之间的共变可能是由于对共同功能的选择,以及/或者共同的遗传和发育基础。这种表型整合的后果是深远的,可以促进或限制形态变异。众所周知,脊椎动物大脑是颅面发育的“组织者”,分泌形态发生素,可影响生长中的神经颅的形状,这与大脑-神经颅共变中的多效性作用一致。在这里,我们通过在杂交 F 群体中使用三维几何形态计量学首先检查大脑和神经颅之间的形状整合程度,然后使用数量性状位点 (QTL) 分析进行遗传作图来检验这个假设。我们观察到大脑和神经颅之间存在形状关联,即使我们评估大脑与神经颅的组成部分(吻突和脑颅)之间的关联时,这种模式仍然存在。我们还恢复了硬组织和软组织特征的强大遗传信号,并确定了一个 QTL 区域,其中大脑和脑颅的 QTL 重叠,表明多效性在塑造特征共变中起作用。重叠基因组区域的精细映射确定了一个候选基因 notch1a,该基因已知在发育过程中参与骨骼和神经组织的模式形成。综上所述,这些数据为大脑-神经颅共变提供了遗传假设,以及行为转变可能同时驱动神经解剖和颅面形态快速变化的潜在机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b31/10078109/170fe18aa24e/EDE-25-85-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验