Suppr超能文献

Long-term neurobehavioral and histological damage in brain of mice induced by L-cysteine.

作者信息

Gazit Vered, Ben-Abraham Ron, Pick Chaim G, Ben-Shlomo Izhar, Katz Yeshayahu

机构信息

Laboratory for Anesthesia, Pain and Neural Research, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.

出版信息

Pharmacol Biochem Behav. 2003 Jul;75(4):795-9. doi: 10.1016/s0091-3057(03)00147-3.

Abstract

We investigated whether structural central neural damage and long-term neurobehavioral deficits after L-cysteine (L-Cys) administration in mice is caused by hypoglycemia. Neonatal ICR mice were injected subcutaneously with L-Cys (0.5-1.5 mg/g body weight [BW]) or saline (control). Blood glucose was measured. At 50 days of age, mice were introduced individually into an eight-arm maze for evaluation of spatial memory (hippocampal-related behavior). Times for visiting all eight arms and number of entries until completion of the eight-arm visits (maze criteria) were measured. The test was repeated once daily for 5 days. In situ terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay was used for detection of brain damage. As early as 20 min and up to 2 h postinjection, animals treated with L-Cys doses higher than 1.2 mg/g BW developed hypoglycemia and looked ill. Several animals convulsed. Long-term survivors required more time, in a dose-dependent manner, to assimilate the structure of the maze, and animals treated with L-Cys (1.5 mg/g BW) exhibited TUNEL-positive changes in the hippocampal regions. All these changes were reversible by coadministration of glucose. We conclude that L-Cys injection can cause pronounced hypoglycemia associated with long-term neurobehavioral changes and central neural damage in mice. Since L-Cys is chemically different from the other excitatory amino acids (glutamate and aspartate), the long-reported L-Cys-mediated neurotoxicity may be connected to its hypoglycemic effect.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验