Suppr超能文献

Tissue-specific ecdysone responses: regulation of the Drosophila genes Eip28/29 and Eip40 during larval development.

作者信息

Andres A J, Cherbas P

机构信息

Department of Biology and Program in Genetics, Indiana University, Bloomington 47405.

出版信息

Development. 1992 Dec;116(4):865-76. doi: 10.1242/dev.116.4.865.

Abstract

The Drosophila genes Eip28/29 and Eip40 are expressed in Kc cells and are rapidly induced by the steroid hormone ecdysone. The molecular basis for Eip28/29's regulation in those cells has been studied in some detail. To determine how this regulation relates to normal development, we have examined the expression of both genes throughout Drosophila development, with special attention to Eip28/29 and the final larval instar. Eip28/29 expression is complex; there are tissues in which it is never expressed, others in which it is continuously expressed at a low level and tissues in which its expression is regulated without obvious relationship to endocrine events. However high-level Eip28/29 expression always correlates with the presence of ecdysone and there is good evidence that Eip28/29 is directly regulated by the hormone in some tissues and at some stages. Most striking are the induction of Eip28/29 transcripts in numerous tissues at the last larval molt, their induction in the epidermis at the time of the 'late 3rd transition', their extinction in the same tissue by the premetamorphic ecdysone peak, and their induction by that peak in the lymph gland, hemocytes and proventriculus. These contrasting regulatory behaviors provide a well-defined model for studying the developmental specificity of steroid responses. Eip40 appears to be ecdysone-inducible only in the lymph gland and there only at the premetamorphic peak. The similarities been Eip28/29 and Eip40 regulation in the lymph gland and Kc cells support the idea that Kc cells are derived from a hematopoietic ancestor.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验